作业帮 > 数学 > 作业

若关于x的一元二次方程4x²+4mx+m²+m-10=0的的根都是整数,求满足条件的正整数m的值.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 16:11:15
若关于x的一元二次方程4x²+4mx+m²+m-10=0的的根都是整数,求满足条件的正整数m的值.
若关于x的一元二次方程4x²+4mx+m²+m-10=0的的根都是整数,求满足条件的正整数m的值.
4x²+4mx+m²+m-10=0
(4m)^2-4*4*(m^2+m-10)
=16(m^2-m^2-m+10)
=16(-m+10)
x的一元二次方程4x²+4mx+m²+m-10=0的的根都是整数
且m为正整数
10-m=1或10-m=4 或10-m=9
m=9或m=6 或m=1
再问: *是什么?
再答: *表示乘号 先求出b^2-4ac,要使方程根为整数,根据求根公式,则b^2-4ac是完全平方数