作业帮 > 数学 > 作业

如图平行四边形ABCD中E是BC中点BF:AF=1:2连接BD EF 交于点M 求BM:BD 的值

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 18:51:20
如图平行四边形ABCD中E是BC中点BF:AF=1:2连接BD EF 交于点M 求BM:BD 的值


如图平行四边形ABCD中E是BC中点BF:AF=1:2连接BD EF 交于点M 求BM:BD 的值

1:4
再问: 过程
再答: 是1:5取AF中点G,连接CG交BD于N;在CD上分别取CD的三分点H、J,取AB中点L,连接AH、LJ,分别交BD于PQ∵BF=FG,BE=CG,∴EF是△BCG的中位线, ∴EF//CG 而 ∵ BE=CE ∴EM是△BCN的中位线, ∴BM=MN∵四边形ABCD是平行四边形  ∴∠ACB=∠ADC,AB=CD,AD=BC,∠ABD=∠CDB 又∵BG=2/3AB=2/3CD=DH  ∴△BCG≌△DAH,∴CG=AH,∠BGC=∠DHA,而AB//DC ∴CG//AH∴△BCN≌△DAH ∴BN=DP ∵CG//AH ∴△BFM∽△BAP ∴BM:BP=BF:BA=1:3∴BM:BD=BM:(BP+DP)=BM:(BP+BN)=1:5