可导与连续的关系可导的充要条件是:左极限=右极限(左右极限都存在)连续的充要条件是:左极限=右极限=在该点的函数值(左右
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/06 15:23:26
可导与连续的关系
可导的充要条件是:左极限=右极限(左右极限都存在)
连续的充要条件是:左极限=右极限=在该点的函数值(左右极限都存在)
以上式子对吗?要是对的话,连续要求的条件应该更高呀,连续了应该肯定可导呀!可是书上的证明却是:可导必连续,连续未必可导数
可导的充要条件是:左极限=右极限(左右极限都存在)
连续的充要条件是:左极限=右极限=在该点的函数值(左右极限都存在)
以上式子对吗?要是对的话,连续要求的条件应该更高呀,连续了应该肯定可导呀!可是书上的证明却是:可导必连续,连续未必可导数
关于函数的导数和连续有比较经典的四句话:
1、连续的函数不一定可导.
2、可导的函数是连续的函数.
3、越是高阶可导函数曲线越是光滑.
4、存在处处连续但处处不可导的函数.
左导数和右导数存在且“相等”,才是函数在该点可导的充要条件,不是左极限=右极限(左右极限都存在).连续是函数的取值,可导是函数的变化率,当然可导是更高一个层次.
1、连续的函数不一定可导.
2、可导的函数是连续的函数.
3、越是高阶可导函数曲线越是光滑.
4、存在处处连续但处处不可导的函数.
左导数和右导数存在且“相等”,才是函数在该点可导的充要条件,不是左极限=右极限(左右极限都存在).连续是函数的取值,可导是函数的变化率,当然可导是更高一个层次.
函数中左极限和右极限 和极限存在、连续、可导之间的关系
是不是左极限=右极限是连续的必要条件,但必要充分条件是左极限=右极限=函数值.函数在某一点连续“必定”左右极限相等.有没
高等数学可导和连续问题.连续的充要条件是左右极限相等且等于函数值,可导的充要条件是左右极限相等.
可导与连续之间的关系【极限存在】:左右极限存在且相等连续:【极限存在】就连续可导:【极限存在】+极限值=f(x0)lim
连续的函数是存在极限的,而可导的充要条件是函数连续并且左右极限存在且相等,他们之间有什么区别.
右连续的充要条件是不是右极限等于函数值
函数在X0点连续并且可导,那么左导数=左极限=右极限=右导数=f(X0)=f(X0)的一阶导数
函数关于在某点处是连续的是什么意思?答案说是左极限等于右极限?不理解左右极限啊!
根据函数极限定义证明:函数f(x)当xn时极限存在的充要条件是左极限,右极限各自存在并且相等.
左极限等于右极限,但不等于该点的函数值,极限存在吗
什么是连续、可导、左极限、右极限?
可导的充要条件是左右导数存在且相等,即其左右极限相等且等于该点处的函数值.