作业帮 > 数学 > 作业

已知向量a=(cos3/2x,sin3/2x),b=(cosx/2,-sinx/2),其中x属于[0,π/2]

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 11:09:13
已知向量a=(cos3/2x,sin3/2x),b=(cosx/2,-sinx/2),其中x属于[0,π/2]
若f(x)=a.b-2入/a+b/的最小值为-3/2.求入值
已知向量a=(cos3/2x,sin3/2x),b=(cosx/2,-sinx/2),其中x属于[0,π/2]
a*b=cos3/2x*cosx/2-sin3/2xsinx/2=cos2x
|a+b|^2=a^2+b^2+2ab=2+2cos2x
用m表示那字母吧,不好打
f(x)=cos2x-2m根号(2+2cos2x)
=cos2x-4m|cosx|=2cosx^2-4m|cosx|-1=2(|cosx|-m)^2-2m^2-1
最小值为-3/2
那么在|cosx|=m>0处去有最小值
2m^2+1=3/2
m^2=1/4
m=1/2 (舍去负的)