求极限lim(1+1/n)^n
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 14:55:57
求极限lim(1+1/n)^n
lim(1+1/n)^n n趋向无穷大
lim(1+1/n)^n n趋向无穷大
首先需要二项式定理:
(a+b)^n=∑ C(i=0 –> i=n)n i a^(n-i) * b^i (式一)
用数学归纳法证此定理:
n=1 (a+b)^1 a^(1-0)*b^0+a^(1-1)*b^1
a+b
故此,n=1时,式一成立.
设n1为任一自然数,假设n=n1时,(式一)成立 ,即:
(a+b)^n1=∑ C(i=0 –> i=n1)n1 i a^(n1-i) * b^i (式二)
则,当n=n1+1时:
式二两端同乘(a+b)
[(a+b)^n1]*(a+b)=[∑ C(i=0 –> i=n1)n1 i a^(n1-i) * b^i]*(a+b)
=> (a+b)^(n1+1)= ∑ C(i=0 –> i=(n1+1))(n1+1) i a^((n1+1)-i) * b^i ( 据乘法分配律)
因此二项式定理(即式一成立)
下面用二项式定理计算这一极限:
(1+1/n)^n (式一)
用二项式展开得:
(1+1/n)^n = 1^n+(n/1)(1/n)+[(n(n-1))/(2*1)]*(1/n)^2+[(n(n-1)(n-2))/(3*2*1)]*(1/n)^3 + … +[(n(n-1)(n-2) …3)/((n-2)(n-1) … 2*1)]*(1/n)^(n-2)+ [(n(n-1)(n-2) …3*2)/((n-1)(n-2)(n-1) … 2*1)]*(1/n)^(n-1)+ [(n(n-1)(n-2) …3*2*1)/(n(n-1)(n-2)(n-1) … 2*1)]*(1/n)^n
由于二项展开式系数项的分子乘积的最高次项与(1/n)的次数相同,而系数为1,因此,最高次项与(1/n)的相应次方刚好相约,得1,低次项与1/n的相应次方相约后,分子剩下常数,而分母总余下n的若干次方,当n -> +∞,得0.因此总的结果是当n -> +∞,二项展开式系数项的各项分子乘积与(1/n)的相应项的次方相约,得1.余下分母.于是式一化为:
(1+1/n)^n =1+1+1/2!+1/3!+1/4!+1/5!+1/6!+ … + 1/n!(式二)
当n -> +∞时,你可以用计算机,或笔计算此值.这一数值定义为e.
补充:
将式二和公比为1/2的等比数列比较,其每一项都小于此等比数列,而此等比数列收敛,因此,式二必定收敛于一固定数值.
(a+b)^n=∑ C(i=0 –> i=n)n i a^(n-i) * b^i (式一)
用数学归纳法证此定理:
n=1 (a+b)^1 a^(1-0)*b^0+a^(1-1)*b^1
a+b
故此,n=1时,式一成立.
设n1为任一自然数,假设n=n1时,(式一)成立 ,即:
(a+b)^n1=∑ C(i=0 –> i=n1)n1 i a^(n1-i) * b^i (式二)
则,当n=n1+1时:
式二两端同乘(a+b)
[(a+b)^n1]*(a+b)=[∑ C(i=0 –> i=n1)n1 i a^(n1-i) * b^i]*(a+b)
=> (a+b)^(n1+1)= ∑ C(i=0 –> i=(n1+1))(n1+1) i a^((n1+1)-i) * b^i ( 据乘法分配律)
因此二项式定理(即式一成立)
下面用二项式定理计算这一极限:
(1+1/n)^n (式一)
用二项式展开得:
(1+1/n)^n = 1^n+(n/1)(1/n)+[(n(n-1))/(2*1)]*(1/n)^2+[(n(n-1)(n-2))/(3*2*1)]*(1/n)^3 + … +[(n(n-1)(n-2) …3)/((n-2)(n-1) … 2*1)]*(1/n)^(n-2)+ [(n(n-1)(n-2) …3*2)/((n-1)(n-2)(n-1) … 2*1)]*(1/n)^(n-1)+ [(n(n-1)(n-2) …3*2*1)/(n(n-1)(n-2)(n-1) … 2*1)]*(1/n)^n
由于二项展开式系数项的分子乘积的最高次项与(1/n)的次数相同,而系数为1,因此,最高次项与(1/n)的相应次方刚好相约,得1,低次项与1/n的相应次方相约后,分子剩下常数,而分母总余下n的若干次方,当n -> +∞,得0.因此总的结果是当n -> +∞,二项展开式系数项的各项分子乘积与(1/n)的相应项的次方相约,得1.余下分母.于是式一化为:
(1+1/n)^n =1+1+1/2!+1/3!+1/4!+1/5!+1/6!+ … + 1/n!(式二)
当n -> +∞时,你可以用计算机,或笔计算此值.这一数值定义为e.
补充:
将式二和公比为1/2的等比数列比较,其每一项都小于此等比数列,而此等比数列收敛,因此,式二必定收敛于一固定数值.
求极限n~∞,lim(n+1)/2n
求极限lim 2/(3^n-1)
求极限 lim x-无穷 sin(n+1)/(n+a)
求极限lim(n→∞)(a^n+(-b)^n)/(a^n+1+(-b)^n+1)
求极限lim [ 2^(n+1)+3^(n+1)]/2^n+3^n (n→∞)
lim n →∞ (1^n+3^n+2^n)^1/n,求数列极限
求极限 lim(n->无穷)[(3n^2-2)/(3n^2+4)]^[n(n+1)]
lim(n→∞) ((2n!/n!*n)^1/n的极限用定积分求
求极限lim(x→∞)(1/n+2/n+3/n..+n/n)
lim n*[(1– ln(n)/n)^n]极限
求极限:Lim(1+1/n-1/n^2)^n n趋向于正无穷
求极限:lim(n→∞)[(3n+1 )/(3n+2)]^(n+1)