作业帮 > 数学 > 作业

求极限lim(1-1/2)(1-1/3)(1-1/4)...(1-1/n)=

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 15:09:19
求极限lim(1-1/2)(1-1/3)(1-1/4)...(1-1/n)=
lim(x→∞)(l-1/4)(1-1/9)..(1-1/n^2)=
求极限lim(1-1/2)(1-1/3)(1-1/4)...(1-1/n)=
lim(1-1/2)(1-1/3)(1-1/4)...(1-1/n)=lim(1/2)(2/3)(3/4).[(n-2)/(n-1)][(n-1)/n]=lim1/n=0
lim(l-1/4)(1-1/9)..(1-1/n^2)
=lim(1-1/2)(1-1/3)(1-1/4)...(1-1/n)*(1+1/2)(1+1/3)(1+1/4)...(1+1/n)
=lim1/n *(n+1)/2
=1/2