(2014•荆州)如图①,已知:在矩形ABCD的边AD上有一点O,OA=3,以O为圆心,OA长为半径作圆,交AD于M,恰
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/10 16:39:13
(2014•荆州)如图①,已知:在矩形ABCD的边AD上有一点O,OA=
3 |
(1)证明:连接OH,如图①所示.
∵四边形ABCD是矩形,
∴∠ADC=∠BAD=90°,BC=AD,AB=CD.
∵HP∥AB,
∴∠ANH+∠BAD=180°.
∴∠ANH=90°.
∴HN=PN=
1
2HP=
3
2.
∵OH=OA=
3,
∴sin∠HON=
HN
OH=
3
2.
∴∠HON=60°
∵BD与⊙O相切于点H,
∴OH⊥BD.
∴∠HDO=30°.
∴OD=2
3.
∴AD=3
3.
∴BC=3
3.
∵∠BAD=90°,∠BDA=30°.
∴tan∠BDA=
AB
AD=
3
3.
∴AB=3.
∵HP=3,
∴AB=HP.
∵AB∥HP,
∴四边形ABHP是平行四边形.
∵∠BAD=90°,AM是⊙O的直径,
∴BA与⊙O相切于点A.
∵BD与⊙O相切于点H,
∴BA=BH.
∴平行四边形ABHP是菱形.
(2)△EFG的直角顶点G能落在⊙O上.
如图②所示,点G落到AD上.
∵EF∥BD,
∴∠FEC=∠BDC.
∵∠BDC=90°-30°=60°,
∴∠CEF=60°.
由折叠可得:∠GEF=∠CEF=60°.
∵四边形ABCD是矩形,
∴∠ADC=∠BAD=90°,BC=AD,AB=CD.
∵HP∥AB,
∴∠ANH+∠BAD=180°.
∴∠ANH=90°.
∴HN=PN=
1
2HP=
3
2.
∵OH=OA=
3,
∴sin∠HON=
HN
OH=
3
2.
∴∠HON=60°
∵BD与⊙O相切于点H,
∴OH⊥BD.
∴∠HDO=30°.
∴OD=2
3.
∴AD=3
3.
∴BC=3
3.
∵∠BAD=90°,∠BDA=30°.
∴tan∠BDA=
AB
AD=
3
3.
∴AB=3.
∵HP=3,
∴AB=HP.
∵AB∥HP,
∴四边形ABHP是平行四边形.
∵∠BAD=90°,AM是⊙O的直径,
∴BA与⊙O相切于点A.
∵BD与⊙O相切于点H,
∴BA=BH.
∴平行四边形ABHP是菱形.
(2)△EFG的直角顶点G能落在⊙O上.
如图②所示,点G落到AD上.
∵EF∥BD,
∴∠FEC=∠BDC.
∵∠BDC=90°-30°=60°,
∴∠CEF=60°.
由折叠可得:∠GEF=∠CEF=60°.
如图1,已知:在矩形ABCD的边上有一点O,OA=根号3,以O为圆心,OA长为半径作圆,交AD于M,恰好与BD相切于H,
如图,在矩形ABCD中,点O在对角线AC上,以OA长为半径的圆O与AD,AC分别交于点E,F,∠ACB=∠DCE.(1)
已知如图,在矩形ABCD中,点O在对角线AC上,以OA长为半径的圆O与AD,AC分别交于点E,F,
如图,在矩形ABCD中,AB=√2,BC=2,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且
(2012•东城区二模)如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,
数学题,马上如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=
如图,O为正方形ABCD对角线上一点,以O为圆心,OA长为半径的圆O与BC相切于M与AB,AD分别交于EF
如图,在矩形ABCD中,点O在对角线AC上,以OA长为半径的圆O与AD,AC分别交于点E,F,∠A
关于初3圆的证明题1.已知:如图,矩形ABCD的对角线交于点O.求证:A,B,C,D 四点都在以点O位圆心,OA长为半径
如图,以矩形ABCD的对角线AC的中点O为圆心,OA长为半径作圆O.(3)若F是EG的中点.咋做啊》
在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆o于AD ,AC分别交与点E,F且∠ACB=∠DCE 1.判断
O为正方形ABCD对角线上一点,以O为圆心,OA长为半径的圆O与BC相切于M与AB,AD分别交于EF,求证圆O与CD相切