数列{Bn},首项3;已知前n项和Sn满足:Sn-Sn_1=√Sn+√Sn_1(n大于等于2);求通项Bn
已知数列{an},{bn}的前n项和Sn、Tn,Sn=2n平方+3n,Tn=2-bn求通项公式an,bn
已知数列{an}的前n项和Sn=3×(3/2)^(n-1)-1,数列{bn}满足bn=a(n+1)/log3/2(an+
an=2*3^n-1 若数列bn满足bn=an+(-1)^n*ln(an),求数列bn前n项和Sn
已知数列an满足bn=an-3n,且bn为等比数列,求an前n项和Sn
已知数列{an}前n项和为sn,且sn=2n^2+n数列{bn}满足an=4log2(bn)+3,n∈N*
已知数列an的前n项和sn,且满足2sn+an=2,bn=2
已知数列{an}的前n项和sn满足sn=an^2+bn,求证{an}是等差数列
已知数列{bn}=n(n+1),求数列{bn的前n项和Sn
数列{bn}的前n项和为Sn,且Sn,且Sn=1-1/2bn(n∈N+) 求{bn}的通项公式
已知数列an首相a1=3,通项an和前n项和SN之间满足2an=Sn*Sn-1(n大于等于2)
已知数列an满足a1=2 其前n项和为Sn Sn =n+7~3an 数列bn满足 bn=an~1 证明数列bn是等差数列
已知数列(An)满足A1=1 An+1=3An 数列(Bn)前n项和Sn=n*n+2n+1