作业帮 > 数学 > 作业

预计某地区明年从年初开始的前x个月内,对某种商品的需求总量f(x)(万件)近似满足:f(x)=x(x+1)(35-2x)

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 01:44:53
预计某地区明年从年初开始的前x个月内,对某种商品的需求总量f(x)(万件)近似满足:f(x)=x(x+1)(35-2x)(x∈N*,且x≤12)
(1)写出明年第x个月的需求量g(x)(万件)与月份x的函数关系式,并求出哪个月份的需求量超过192万件;
(2)如果将该商品每月都投放到该地区P万件(不包含积压商品),要保证每月都满足供应,P应至少为多少万件?(积压商品转入下月继续销售)
预计某地区明年从年初开始的前x个月内,对某种商品的需求总量f(x)(万件)近似满足:f(x)=x(x+1)(35-2x)
(1)当x=1时,g(1)=f(1)=66(万件)
当x≥2时,g(x)=f(x)-f(x-1)
=x(x+1)(35-2x)-(x-1)x(37-2x)=-6x2+72x.
所以,g(x)=-6(x2-12x)(x∈N*且x≤12).
由g(x)>192,即-6(x2-12x)>192.
化简得x2-12x+32<0,解得4<x<8.
又x∈N*,所以x=5,6,7.
答:第5,6,7月份的需求量超过192万件;
(2)要保证每月都满足供应,则P≥
g(x)
x对于x∈N*,x≤12恒成立.

g(x)
x=(x+1)(35−2x)=−2x2+33x+35.
所以当x=8时,
g(x)
x取最大值171.
所以P≥171.
答:每月至少应投放171万件.