作业帮 > 数学 > 作业

史上最难题2设A={x/-2小于或等于x小于或等于a},B={y/y=2x+3,x属于A},C={z/z=x^2,x属于

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/06 11:31:43
史上最难题2
设A={x/-2小于或等于x小于或等于a},B={y/y=2x+3,x属于A},C={z/z=x^2,x属于A},C包含于B,求实数a的取值范围.为什么要讨论a^2和2^2的最小数,不讨论其他数的平方与a^2的最小数 .
最大也可能是5/2的平方呀
由-2≤x≤a可得-1≤y≤2a+3
因为C包含于B,C是B的子集,则C里的最大值和最小值都要在B中才可
对于C,因为x属于A,如果a小于等于0就不需要,当a大于0时C中最大可能是-2的平方,也可能是a的平方,不会是其它数,所以要讨论
史上最难题2设A={x/-2小于或等于x小于或等于a},B={y/y=2x+3,x属于A},C={z/z=x^2,x属于
因为x=-2时z=4,由于集合C包含于集合B,所以集合C是集合B的子集,那么集合B也应含有元素4,故有2a+3>=4,得到a>=1/2,
当1/2=