已知PA⊥平面ABCD,PA=AB=AD=1/2CD,∠BAD=∠ADC=90°.M是线段PC上的动点.试确定点M的位置
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 14:04:05
已知PA⊥平面ABCD,PA=AB=AD=1/2CD,∠BAD=∠ADC=90°.M是线段PC上的动点.试确定点M的位置,使得BM⊥平面PCD.
M位于PC中点时,满足题意.下面来证明
设CD的中点为N,当M位于PC中点时,连接MN、MB、NB
由边角关系很容易得出ABND为正方形,所以BN⊥CD …………①
因为PA⊥平面ABCD,AD⊥BC,由三垂线定理得PD⊥CD,又MN是△PCD的中位线,即MN‖PD,所以
MN⊥CD …………②
①②==>CD⊥面BMN==>BM⊥CD
再由三角形相似(或用勾股定理)可得出PB=BC,又M为中点,所以BM⊥PC,结合上一步得出的BM⊥CD,可知
BM⊥平面PCD
设CD的中点为N,当M位于PC中点时,连接MN、MB、NB
由边角关系很容易得出ABND为正方形,所以BN⊥CD …………①
因为PA⊥平面ABCD,AD⊥BC,由三垂线定理得PD⊥CD,又MN是△PCD的中位线,即MN‖PD,所以
MN⊥CD …………②
①②==>CD⊥面BMN==>BM⊥CD
再由三角形相似(或用勾股定理)可得出PB=BC,又M为中点,所以BM⊥PC,结合上一步得出的BM⊥CD,可知
BM⊥平面PCD
已知PA垂直平面ABCD.四边形ABCD是矩形.PA=AD,M,N分别是AB,PC的中点,
如图,PA⊥矩形ABCD所在的平面,PA=AD,M,N分别是AB,PC的中点.
已知PA⊥平面ABCD,四边形ABCD为矩形,PA=AD,M、N分别是AB、PC的中点,求证:
PA垂直于矩形ABCD所在平面,PA=PD,点M,N分别是AB,PC的中点.求证:MN⊥平面PCD
如图,PA垂直ABCD所在的平面,M,N分别是边AB,PC的中点,PA=AD
在△ABC中,∠B为直角,P是△ABC外一点,且PA=PB,PB⊥BC.若M是PC的中点,试确定AB上点N的位置,使得M
已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则|PA+3PB|
在四棱锥P-ABCD中,AB⊥AD,CD⊥AD,PA⊥平面ABCD,PA=AD=CD=2AB=2,M为PC的中点.
已知PA垂直矩形ABCD所在平面,M,N分别是AB,PC的终点.(1)求证:MN垂直CD;(2)若角PDA=45°,求证
已知点P是平面四边形ABCD所在平面外一点,且AB=CD,AD=CD,PA=PC,求证平面PAC垂直平面PBD
如图所示,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,M、N分别是AB、PC的中点,PA=AD=a.
如图所示,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,M、N分别是AB、PC的中点,PA=AD=a