已知函数f(x)=x^3+ax^2+bx+c=0的三个实根可分别作为一个椭圆、一双曲线、一抛物线
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 18:18:01
已知函数f(x)=x^3+ax^2+bx+c=0的三个实根可分别作为一个椭圆、一双曲线、一抛物线
的离心率,求a/b的取值范围
的离心率,求a/b的取值范围
因为有一个根是抛物线的离心率,所以有一根为1,带入式子可得到1+a+b+c=0所以c=-1-a-b,带入式子,分解因式可得,x^3+ax^2+bx-1-a-b=0,分解因式得到(x-1)(x^2+(1+a+b)x+1+a-b)=0,所以其余两根满足x^2+(1+a+b)x+1+a-b=0由于一根大于1,一根小于1,x^2的系数大于0,所以当x=1时,式子x^2+(1+a+b)x+1+a-b小于0,可得到ab-1(1),所以可得到
已知方程f(x)=x3+ax2+bx+c=0的三个实根可分别作为一个椭圆,一双曲线,一抛物线的离心率
已知方程x3+ax2+bx+c=0的三个实根可分别作为一椭圆,一双曲线、一抛物线的离心率,则a2+b2的取值范围是(
已知关于x的方程x3+ax2+bx+c=0的三个实根可作为一个椭圆、一条双曲线和一条抛物线的离心率,则b−1a+1
已知函数f(x)=x³+ax²+bx+c的一个零点为x=1,另外两个零点可分别作为一个椭圆、一个双曲
f(x)=x^3+ax^2+bx+c的一个零点为x=1,另外两个零点可分别作为椭圆和双曲线的离心率,则b/a取值范围?答
已知函数f(x)=x3+ax2+bx+c,(a,b,c∈R)的一个零点为x=1,另外两个零点分别可作为椭圆和双曲线的离心
已知函数:f(x)=x^3+ax^2+bx+c,过曲线y=f(x)
已知二次函数f(x)=ax^2+bx+c,试找出方程f(f(x))=x有4个实根的充要条件.并证明.
已知函数F【X】=x的3次方-ax方+bx+c的图像为曲线E
已知三次方程x3+ax2+2x+b=0有三个实数根,它们分别可作为抛物线、双曲线、椭圆的离心率,
关于x的方程2x^2+ax-5-2a=0的两实根可分别作为一个椭圆与一个双曲线的离心率,则实数a的取值范围是?
已知函数f(x)=x^3+ax^2+bx+c,曲线在点x=1处的切线为3x-y+1=0,若x=2/3时,y=f(x