作业帮 > 数学 > 作业

如图,⊙O1和⊙O2外切于点A,BC是⊙O1和⊙O2的公切线,B、C为切点.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 07:18:55
如图,⊙O1和⊙O2外切于点A,BC是⊙O1和⊙O2的公切线,B、C为切点.

(1)求证:AB⊥AC;
(2)过点A的直线分别交⊙O1、⊙O2于点D、E,且DE是连心线时,直线DB与直线EC交于点F.请在图中画出图形,并判断DF与EF是否互相垂直,请证明;若不垂直,请说明理由;
(3)在(2)的其他条件不变的情况下,将直线DE绕点A旋转(DE不与点A、B、C重合),请另画出图形,并判断DF与EF是否互相垂直?若垂直,请证明;若不垂直,请说明理由.
如图,⊙O1和⊙O2外切于点A,BC是⊙O1和⊙O2的公切线,B、C为切点.
(1)证明:如图1,过点A作⊙O1和⊙O2的内公切线交BC于点O,
∵OB、OA是⊙O1的切线,
∴OB=OA.
同理OC=OA.
∴OB=OC=OA.
∴△ABC是直角三角形.
∴AB⊥AC.
(2)DF⊥EF.理由如下:
如图1,∵⊙O1和⊙O2外切于点A,
∴∠ABC=∠FDA,∠ACB=∠FEA,
由(1)得∠ABC+∠ACB=90°,
∴∠FDA+∠FEA=90°,
∴∠DFE=90°,即DF⊥EF;
(3)DF⊥EF.理由如下:
第一种情况:如图2,
∵⊙O1和⊙O2外切于点A,
∴∠ABC=∠FDA,∠ACB=∠FEA.
由(1)得∠ABC+∠ACB=90°,
∴∠FDA+∠FEA=90°.
∴∠DFE=90°,即DF⊥EF.
第二种情况:如图3,
∵∠ACB=∠FEA,∠CBD=∠BAD,∠EDF=∠DBA+∠DAB,
∴∠EDF=∠ABC.
∵∠ABC+∠ACB=90°,
∴∠EDF+∠AEC=90°.
∴∠DFE=90°,即EF⊥DF.
请教一道初中数学题如图,已知:圆O1与O2外切于A,BC是圆O1和圆O2的公切线,切点为B.C,连接BA并延长交圆O1于 1.已知:⊙O1和⊙O2外切于点A,BC是⊙O1和⊙O2的外公切线,切点分别是B、C,两圆的内公切线交BC于点D,求证: 如图,⊙O1与⊙02外切于C,AB为⊙O1与⊙O2的外公切线,且A、B为切点.已知CA=4,CB=3,则线段AB的长是_ 已知:如图,两个半径长为r的等圆⊙O1和⊙O2外切与点P,A是⊙O1上的一点,BP⊥AP,BP交⊙O2于点B.求证:AB (2013•高淳县一模)如图,半径为2的两个等圆⊙O1与⊙O2外切于点P,过O1作⊙O2的两条切线,切点分别为A、B,与 已知:如图,⊙O1与⊙O2外切于A点,直线l与⊙O1、⊙O2分别切于B,C点,若⊙O1的半径r1=2cm,⊙O2的半径r (2005•眉山)已知:如图,⊙O1与⊙O2外切于M点,AF是两圆的外公切线,A、B是切点,DF经过O1、O2,分别交⊙ 如图,已知⊙O1和⊙O2相交于A,B两点,过点A作⊙O2的切线交⊙O1于点C,过点B作两圆的割线分别交⊙O1,⊙O2 (1997•南京)已知:如图,⊙O1与⊙O2外切于点P,A为⊙O1上一点,直线AC切⊙O2于点C,且交⊙O1于点B,AP 如图,半径为r的⊙O1与半径为3r的⊙O2外切于P点,AB是两圆的外公切线,切点分别为A、B,求AB和⌒PA、⌒PB所围 如图,⊙O1与⊙O2外切与点C,直线AB分别切⊙O1、⊙O2与A、B,⊙O1的半径为3cm,⊙O2的半径为1cm,求阴影 右图,圆O1与圆O2外切于点P,AB是圆O1和圆O2的外公切线.A,B是切点.A,B与连心线O1O2的延长线相交于点C.