1.AB是半圆O的直径.C是AB弧的中点,M是弦AC的中点,CH⊥BM,垂足为H.求证:CH^2=AH*OH
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 23:01:56
1.AB是半圆O的直径.C是AB弧的中点,M是弦AC的中点,CH⊥BM,垂足为H.求证:CH^2=AH*OH
(ps,这题有点思路.可做到一半证不下去了.)
(要证:CH^2=AH*OH ,只需证CH/OH=AH/CH,即证△CHA∽△OHC,即证∠ACH=∠COH.∠CAH=∠OCH
∵∠CHB=∠COB=Rt∠,∴B.C.H.O四点共圆,∠HOC=∠HBC,又∵∠HBC+∠BCH=∠ACH+∠BCH=Rt∠,∠HBC=∠ACH=∠COH.)然后怎么证?
2.四边形ABCD内接于圆,P是AB中点,PE⊥AD,PF⊥BC,PG⊥CD,M是线段PG和EF的交点,求证:ME=MF.
为啥- -
第一题那半道都没人能解麽-
亏我打字打的好辛苦。
咔咔~2楼哒强人。加油加油。咱等你哟~
(ps,这题有点思路.可做到一半证不下去了.)
(要证:CH^2=AH*OH ,只需证CH/OH=AH/CH,即证△CHA∽△OHC,即证∠ACH=∠COH.∠CAH=∠OCH
∵∠CHB=∠COB=Rt∠,∴B.C.H.O四点共圆,∠HOC=∠HBC,又∵∠HBC+∠BCH=∠ACH+∠BCH=Rt∠,∠HBC=∠ACH=∠COH.)然后怎么证?
2.四边形ABCD内接于圆,P是AB中点,PE⊥AD,PF⊥BC,PG⊥CD,M是线段PG和EF的交点,求证:ME=MF.
为啥- -
第一题那半道都没人能解麽-
亏我打字打的好辛苦。
咔咔~2楼哒强人。加油加油。咱等你哟~
第一道的后面半部分是这样的:
由于∠MCB=∠CHB=90度,故CM^2=BM*BH,那么AM^2=BM*BH,则△MAH∽△MBA,那么∠MAH=∠MBA=∠OCH,你要的三角形就相似了.
第二道是个有点名气的竞赛题,我不摸竞赛很长时间了,现在是不太作得出了,不好意思呵呵,不过2楼说得很对,学竞赛的话题还是自己多摸索摸索有意思,尤其是几何题,相当好玩的.
由于∠MCB=∠CHB=90度,故CM^2=BM*BH,那么AM^2=BM*BH,则△MAH∽△MBA,那么∠MAH=∠MBA=∠OCH,你要的三角形就相似了.
第二道是个有点名气的竞赛题,我不摸竞赛很长时间了,现在是不太作得出了,不好意思呵呵,不过2楼说得很对,学竞赛的话题还是自己多摸索摸索有意思,尤其是几何题,相当好玩的.
如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于点D,E为CH的中点,连接AE
如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于点D,E为CH的中点,
如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于点D,E为CH中点,连接AE并
如图已知C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点切线相交于点D,E为CH中点,连接AE并延长交
如图,已知AB是半圆O的直径,C为半圆周上一点,M是弧AC的中点MN⊥AB于N,则有
如图所示,已知AB是⊙O的直径,弦CD⊥AB,垂足为H.(1)求证:AH×AB=AC^2
如图所示,AB是半圆的直径,O是圆心,弧AC=弧CD=弧DB,M是弧CD的中点,H是弦CD的中点,若N是OB上一点,半圆
如图,AB是圆O的直径,M为劣弧AC的中点,弦AC与BM相交于点D,∠ABC=2∠A
如图,已知C是以AB为直径的半圆O上一点,CH⊥AB,直线AC与过B点的切线相交于点D,E为CH中点,连AE并延长交BD
如图,已知:AB是半圆O的直径,AE是弦,C是弧AE的中点,CD⊥AB于D,交AE于M求证:AM=CM
如图所示,三角形ABC的面积为1,E是AC的中点,H是BE的中点,连结AH,并延长交BC于D,连结CH并延长交AB于F,
如图,C,D是⊙O的弦AB上的三等分点,M,N为OC,OD的中点,求证:AM=BM