已知椭圆x^2/a^2+y^2/b^2(a>b>0)的离心率e=根号6/3,椭圆与y轴负半轴的交点为(0,-1) 求椭圆
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 03:31:30
已知椭圆x^2/a^2+y^2/b^2(a>b>0)的离心率e=根号6/3,椭圆与y轴负半轴的交点为(0,-1) 求椭圆方程,
2,已知过定点D(-1,0),若直线y=kx+2(k不等于0)与椭圆交于A,B两点,问:是否存在k的值,使DA垂直DB?请说明理由
2,已知过定点D(-1,0),若直线y=kx+2(k不等于0)与椭圆交于A,B两点,问:是否存在k的值,使DA垂直DB?请说明理由
[[[1]]]
由题设可设
a²=3t² b²=t²,c²=2t².( t>0)
由题设可知b=1.
∴t=1
∴a²=3,b²=1,c²=2
∴该椭圆方程为
(x²/3)+y²=1
[[[2]]]
[1]
可设A(p,kp+2),B(q,kq+2)
联立椭圆与直线方程,整理可得:
(1+3k²)x²+12kx+9=0
判别式⊿=(12k)²-36(1+3k²)=36(k²-1)>0
∴|k|>1
又由韦达定理可得
p+q=-12k/(1+3k²)
pq=9/(1+3k²)
[2]
易知
向量DA=(p+1,kp+2)
向量DB=(q+1,kq+2)
由题设可知 DA* DB=0
∴(p+1,kp+2)*(q+1,kq+2)=0
即(p+1)(q+1)+(kp+2)(kq+2)=0
整理可得
(1+k²)pq+(1+2k)(p+q)+5=0
把上面韦达定理结果代入,整理可得
9(1+k²)-12k(1+2k)+5(1+3k²)=0
解得 k=7/6.(满足|k|>1)
∴满足题设的k存在.
由题设可设
a²=3t² b²=t²,c²=2t².( t>0)
由题设可知b=1.
∴t=1
∴a²=3,b²=1,c²=2
∴该椭圆方程为
(x²/3)+y²=1
[[[2]]]
[1]
可设A(p,kp+2),B(q,kq+2)
联立椭圆与直线方程,整理可得:
(1+3k²)x²+12kx+9=0
判别式⊿=(12k)²-36(1+3k²)=36(k²-1)>0
∴|k|>1
又由韦达定理可得
p+q=-12k/(1+3k²)
pq=9/(1+3k²)
[2]
易知
向量DA=(p+1,kp+2)
向量DB=(q+1,kq+2)
由题设可知 DA* DB=0
∴(p+1,kp+2)*(q+1,kq+2)=0
即(p+1)(q+1)+(kp+2)(kq+2)=0
整理可得
(1+k²)pq+(1+2k)(p+q)+5=0
把上面韦达定理结果代入,整理可得
9(1+k²)-12k(1+2k)+5(1+3k²)=0
解得 k=7/6.(满足|k|>1)
∴满足题设的k存在.
已知椭圆x^2/a^2+y^2/b^2=1过点M(0,2),离心率e=根号6/3 求椭圆方程
已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率e=(根号3)/2,直线l:y=2x-3与椭圆C交与
已知椭圆x平方除以a平方加y平方除以b方等于1(a>b>0)的左焦点为F(-根号2,0)离心率e=根号2/2 求椭圆标准
已知点A(0,-2)椭圆E:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为(根号3)/2 ,F是椭圆E的右焦
关于椭圆,圆锥曲线的已知椭圆x^2/a^2+y^2/b^2=1(a>b>0).已知椭圆的离心率为√6/4,A为椭圆的左顶
已知椭圆X^2/a^2+y^2/b^2=1(a>b>C)的离心率是根号6/3,F是其左焦点,若直线x-根号6y=0与椭圆
已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为e=根号3/2,AB分别为椭圆的长轴和短轴的端点,
已知椭圆C:x^2/a^2+y^2/b^2=1,(a>b>0)的离心率为根号6比3,椭圆短轴的一个的一个端点与两个焦点构
设椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为e=根号2/2,点A是椭圆上的一点,且点A到椭圆c的
已知椭圆x^2/a^2+y^2/b^2=1的右焦点为F2(3,0)离心率为e,设直线y=kx与椭圆相交于A、B两点,M、
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的离心率e=根号2/2,直线x+y+1=0与椭圆交于P,Q两点,
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的离心率e=2分之根号3,连接椭圆的四个顶点得到的菱形的面积为4