作业帮 > 数学 > 作业

是否存在实数a,使f(x)=ax^3+bx+b-1(a≠0)对任意实数b恒有两个相异的零点?

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 12:16:59
是否存在实数a,使f(x)=ax^3+bx+b-1(a≠0)对任意实数b恒有两个相异的零点?
是否存在实数a,使f(x)=ax^3+bx+b-1(a≠0)对任意实数b恒有两个相异的零点?
不存在这样的实数a
假设存在实数a,使得f(x)=ax^3+bx+b-1(a≠0)对任意实数b恒有两个相异的零点
f'(x)=3ax^2+b
若a>=0,令b>0,则f'(x)>0,f(x)递增,此时若存在2个相异的零点,x1=0不成立
若a