作业帮 > 数学 > 作业

用拉普拉斯解二阶微分方程

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 18:40:54
用拉普拉斯解二阶微分方程

其中a b c d e f 都为常数,初始条件为g(0)=0  g'(0)=e
求g(t)
用拉普拉斯解二阶微分方程
假设 L[g(t)]=G(s),那么 L[g'(t)]=G(s)s-g(0),L[g''(t)]=G(s)s^2-g(0)s-g'(0),
L[1]= 1/s,L[c*f+d]=(c*f+d)/s
.如此,
将初值带入原式得到:
aG(s)s^2-ae +bG(s)s +cG(s)= -(cf+d)/s
(as^2 + bs + c)*G(s)= ae - (cf+g)/s
G(s)= ae/(as^2 + bs + c) - (cf+d)/s/(as^2 + bs + c)
g(t) = L^(-1) [ae/(as^2 + bs + c)] - L^(-1)[ (cf+d)/s/(as^2 + bs + c) ]
后面一项,要先拆成 A/S +(Bs+C)/(as^2 + bs + c)
A,B都是由 a,b,c d 组成的常数.
再进一步化简就比较麻烦了,因为都是符号运算,就算我给你答案也是比较复杂,