已知an=n/(2^n),bn=ln(1+an)+1/2 an^2,证明,对一切n∈N*,2/(2+an)<an/bn成
已知数列{an}满足a1=1,a2=2,an+2=(an+an+1)/2,n∈N*.令bn=an+1-an,证明{bn}
数列an=ln(1+1/n),bn=1/n-1/n^2,证明an>bn
{an},{bn}中a1=2,b1=4,an,bn,an+1成等差数列bn,an+1,bn+1成等比数列(n∈N*)
a1=1,a2=2,an+2=(an+an-1)/2,n∈N+,(1)令bn=an+1-an,证明bn是等比数列
等差数列{an},{bn}的前n项和分别为An,Bn,切An/Bn=2n/3n+1,求lim(n→∞)an/bn
在数列{an}中,a1=1,an+1=[(n+1)/n]*an+2(n+1),设bn=an/n,(1)证明数列{bn}是
已知数列{an}和{Bn}满足a1=2 an-1=an(an+1-1) bn=an-1 n∈N+
an=2*3^n-1 若数列bn满足bn=an+(-1)^n*ln(an),求数列bn前n项和Sn
在数列{an},{bn}中,a1=2,b1=4且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈
设数列{An}和{bn}满足A1=1/2,2nA(n+1)=(n+1)An,且Bn=ln(1+An)+1/2(An)2,
设数列{an},{bn}满足a1=1/2,2na(n+1)=(n+1)an,且{bn}=ln(1+an)+1/2an^2
已知数列{an}满足:an+an+1=2an+2,且a1=1,a2=2,n∈N* 一:设bn=an+1-an ,证明bn