p为素数,对任意正整数a都有,是否总存在正整数m,使mp=a~(p-1)-1?若是请简要证明.
p为素数,对任意正整数a都有,是否总存在正整数m,使mp=a~(p-1)-1?若是请简要证明.
求助:证明对任意素数p,存在正整数前n项和Sn及前m项和Sm(n,m为正整数),p=Sn/Sm
设P是素数,证明:对任意的正整数a,p|a^p-a.
设p是大于1的正整数,p^-1+q^-1=1.证明,对任意正整数,有1/p × x^p + 1/q≥x
一道有关整除的证明题证明:对于任意正整数p,都存在正整数m,n(m
数列{xn}中,x1=1,x(n+1)=1+xn/(p+xn),是否存在正整数M,使得对于任意的正整数n,都有xM大于x
证明:对任意整数a总存在正整数n,使得(10^n)-1是a的倍数
证明:分解{1+p+.+p^2k}的素数中一定有一个数大于p 或找出反例.(p为素数,k为正整数)
证明:当n>1时,不存在奇素数p和正整数m使p^n+1=2^m;当n>2时,不存在奇素数p和正整数
数论 证明奇素数p能表示成两个正整数的平方和的充要条件是p=4m+1
有些素数p=2;617满足a是任一小于p的正整数时a^((p-1)/2)-1均被p整除,称类素数.
各项均为正数的数列[an],a1=a,a2=b,且对满足m+n=p+q的正整数m,n,p,q都有am+an/(1+am)