已知ab为常数a≠0 f(x)=ax平方+bx f(2)=0且方程f(x)=x有两个相等实数根
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 01:23:57
已知ab为常数a≠0 f(x)=ax平方+bx f(2)=0且方程f(x)=x有两个相等实数根
是否存在实属m,n(m小于n),使f(x)的定义域、值域分别为[m,n]和[2m,2n]
是否存在实属m,n(m小于n),使f(x)的定义域、值域分别为[m,n]和[2m,2n]
∵f(x)=ax²+bx,f(x)=x有两个相等实数根,∴ax²+bx=x有两个相等实数根,
就是ax²+(b-1)x=0有两个相等实数根,则b=1;
∵f(2)=0,就是2²a+2b=0,或4a+2=0,∴a=-1/2,得f(x)=-x²/2+x.
依题意,欲使f(x)=-x²/2+x=2x,解方程-x²/2-x=0,得两实根x1=-2,x2=0;
令f(x)=-x²+x的定义域为[-2,0],则其值域为[-4,0].
就是说,存在实数m=-2,n=0,能使f(x)的定义域、值域分别为[m,n]和[2m,2n].
就是ax²+(b-1)x=0有两个相等实数根,则b=1;
∵f(2)=0,就是2²a+2b=0,或4a+2=0,∴a=-1/2,得f(x)=-x²/2+x.
依题意,欲使f(x)=-x²/2+x=2x,解方程-x²/2-x=0,得两实根x1=-2,x2=0;
令f(x)=-x²+x的定义域为[-2,0],则其值域为[-4,0].
就是说,存在实数m=-2,n=0,能使f(x)的定义域、值域分别为[m,n]和[2m,2n].
已知ab为常数,且a不等于0 f(x)=ax平方+bx,f(2)=0 方程f(x)=x有两个实数根
已知ab为常数,且a不等于0 f(x)=ax平方+bx,f(2)=0 方程f(x)=x有两个实数根 求f(x)的函数解析
已知a,b为常数,且a不为0,f(x)ax^2+bx,f(2)=0,方程f(x)=x有两个相等的实数根,求函数f(x)
已知a,b为常数,且a不为0,f(x)ax^2+bx,f(2)=0,方程f(x)=x有两个相等的实数根.(1)求函数f(
已知a,b为常数,且a≠0,f(x)=ax2+bx,f(2)=0,方程f(x)=x有两个相等的实数根. (1)求函数f(
已知a,b为常数,且a≠0,f(x)=ax^2;+bx,f(2)=0,方程f(x)=x有两个相等实根
已知二次函数f(x)=ax^2+bx(a,b为常数,且a≠0)满足条件:f(2)=0且方程f(x)=x有两个相等的实数根
已知函数f(x)=x平方/ax+b(a,b为常数)且方程f(x)-x+12=0有两个实数根为x=3和x=4求函数f(x)
已知函数f(x)=(ax+b)/x的平方(a,b为常数),且方程f(x)-x+12=0有两个实数根3,4.求f(x)的解
f(x)=ax²+bx(a≠0),若函数对称轴为x=1,且方程f(x)=x有相等的实数根
已知二次函数f(x)=ax平方+bx(a,b为常数,且a不等于0)满足条件f(x+1)=f(1-x)且方程f(x)=x有
已知a,b为常数,且a≠0,f(x)=ax²+bx,f(2)=0,方程f(x)=x有两个相等的实根 求函数f(