sn=1+1/2+1/3+...1/n,证明:当n≥2时,sn^2≥2(s2/2+s3/3+...sn/n)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 15:22:47
sn=1+1/2+1/3+...1/n,证明:当n≥2时,sn^2≥2(s2/2+s3/3+...sn/n)
Sn^2=(S(n-1)+1/n)^2=[S(n-1)]^2+2S(n-1)/n+1/n^2
=[S(n-1)]^2+[2S(n-1)+2/n]/n-1/n^2
=[S(n-1)]^2+2Sn/n-1/n^2
以此类推可得
Sn^2=S1^2-1/2^2-1/3^2-……-1/n^2+2(s2/2+s3/3+...sn/n)
只要证明n>=2时,
S1^2-1/2^2-1/3^2-……-1/n^2>=0即可
因为,S1=1
且对任意n>=1均有,1/n-1/(n+1)^2
=[(n+1)^2-n]/n(n+1)^2=(n^2+n+1)/n(n+1)^2>(n^2+n)/n(n+1)^2=1/(n+1)
故S1^2-1/2^2-1/3^2-……-1/n^2
=(1/1^2-1/2^2)-1/3^2-……-1/n^2
>1/2-1/3^2-……-1/n^2
>1/3-……-1/n^2
>1/(n-1)-1/n^2>0
原式得证.
=[S(n-1)]^2+[2S(n-1)+2/n]/n-1/n^2
=[S(n-1)]^2+2Sn/n-1/n^2
以此类推可得
Sn^2=S1^2-1/2^2-1/3^2-……-1/n^2+2(s2/2+s3/3+...sn/n)
只要证明n>=2时,
S1^2-1/2^2-1/3^2-……-1/n^2>=0即可
因为,S1=1
且对任意n>=1均有,1/n-1/(n+1)^2
=[(n+1)^2-n]/n(n+1)^2=(n^2+n+1)/n(n+1)^2>(n^2+n)/n(n+1)^2=1/(n+1)
故S1^2-1/2^2-1/3^2-……-1/n^2
=(1/1^2-1/2^2)-1/3^2-……-1/n^2
>1/2-1/3^2-……-1/n^2
>1/3-……-1/n^2
>1/(n-1)-1/n^2>0
原式得证.
高中数学数列证明已知Sn=2^n-1证明:n/2 - 1/3 < S1/S2 + S2/S3 +.+ Sn/Sn+1 <
已知Sn=1/2n(n+1),Tn=S1+S2+S3+.+Sn,求Tn.
sn=n^2 求证1/s1+1/s2+1/s3……1/sn
已知s1=1,s2=1+2,s3=1+2+3,.sn=1+2+3+.+n,求Dn=s1+s2+s3,.sn
Sn=n^2+2n 求1/S1+1/S2+1/S3+……+1/Sn
Sn=1^2-2^2+3^2-4^2 …+(-1)^(n-1)n^2,通过计算S1,S2,S3,S4 可以猜测Sn
已知数列an的前项和为Sn,a1=1,nSn+1-(n+1)Sn=n^2+cn,S1,S2/2,S3/3成等差数列.(1
Sn=3+2^n Sn-1=3+2^(n-1).则Sn-Sn-1=?
An=2n-1,求证1/s1+1/s2+1/s3+…+1/sn
nS(n+1)〖角标〗-(n+1)Sn=n^2+n 且S1、S2/2、S3/3为等差数列 a1=1
已知数列an的前n项和为Sn,a1=-2/3,满足Sn+(1/Sn)+2=an,计算S1,S2,S3,S4,并猜想Sn
数列an的前n项和Sn满足Sn=3n+1,n≤5,Sn=n^2,n≥6,求通项公式