作业帮 > 数学 > 作业

在三角形ABC中,D在BC上,∠B=36°,AB=AC,AC²=CD·CB.求证:△ADC和△ABD都是等腰三

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 13:36:22
在三角形ABC中,D在BC上,∠B=36°,AB=AC,AC²=CD·CB.求证:△ADC和△ABD都是等腰三角形
在三角形ABC中,D在BC上,∠B=36°,AB=AC,AC²=CD·CB.求证:△ADC和△ABD都是等腰三
AC²=CD·CB.∴CD/AC=AC/CB.⊿CDA∽⊿CAB.从AB=AC.得DC=DA.
⊿ADC为等腰三角形.∠DAC=∠C=∠B=36°
∠CAB=180°-2×38°=108°.∠BAD=108°-36°=72°.
∠ADB=2×36°=72°=∠BAD.∴⊿ABD也是等腰三角形.