作业帮 > 数学 > 作业

求一道解析几何题!急!

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 16:51:38
求一道解析几何题!急!
求圆心在直线x+y=0上,且过两圆x^2+y^2-2x+10y-24=0,x^2+y^2+2x+2y-8=0的交点的圆的方程
求一道解析几何题!急!
使用圆系方程即可.
解:设所求圆方程为x^2+y^2-2x+10y-24+m(x^2+y^2
+2x+2y-8)=0(m∈R且m≠-1),易知所设的圆方程所对应的圆过两圆的交点[注意:这种形式已将过两圆的交点的所有圆(除去有系数m的圆)写完],由于有系数m的圆的圆心不在直线x+y=0上,故此题的解一定包含在所写的圆系方程中.然后将所写的圆系方程整理为:(1+m)x^2+(1+m)y^2+(2m-2)x+(2m+10)y-8m-24=0,圆心为(1-m,-m-5).因为圆心在直线x+y=0上,所以1-m+(-m-5)=0,解得:m=-2.故所求圆方程为
-x^2-y^2-6x+6y-8=0,即x^2+y^2+6x-6y+8=0.
这就是圆系方程解过两圆交点的圆方程的优越性.一般不解二次程,即使要解,也因为方程形式中只有一个字母而降低了运算量.