f(x)=asinωx+bcosωx+1(ab≠0,ω>0)的周期为π,f(x)的最大值为4,且f(π/6)=(3√3)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 17:47:32
f(x)=asinωx+bcosωx+1(ab≠0,ω>0)的周期为π,f(x)的最大值为4,且f(π/6)=(3√3)/2+1(1)求a,b的值(2)若α≠β+kπ(k∈z),且α、β是方程f(x)=0的两个根,求tan(α+β)的值.
f(x)=asinωx+bcosωx+1=√(a^2+b^2)sin(ωx+θ)+1
周期为π
则2π/|ω|=π,ω>0
所以ω=2
f(x)的最大值为4
所以√(a^2+b^2)+1=4
故a^2+b^2=9.(1)
f(π/6)=(3√3)/2+1
所以f(π/6)=asin(π/3)+bcos(π/3)+1=(√3/2)*a+b/2+1=(3√3)/2+1.(2)
解方程组(1)(2)得a=3,b=0或a=3/2,b=3√3/2
因为ab≠0
所以a=3/2,b=3√3/2
由前面有:
f(x)=3sin(2x+π/3)+1
令f(x)=3sin(2x+π/3)+1=0
得2x+π/3=2kπ+arcsin(-1/3)或2x+π/3=2kπ+π-arcsin(-1/3)
所以x=kπ-π/6-arcsin(1/3)/2或x=kπ+π/3+arcsin(1/3)/2
因为α≠β+kπ(k∈z),且α、β是方程f(x)=0的两个根
可以取α=5π/6-arcsin(1/3)/2,β=π/3+arcsin(1/3)/2
所以tan(α+β)=tan(5π/6+π/3)=tan(7π/6)=tan(π/6)=√3/3
周期为π
则2π/|ω|=π,ω>0
所以ω=2
f(x)的最大值为4
所以√(a^2+b^2)+1=4
故a^2+b^2=9.(1)
f(π/6)=(3√3)/2+1
所以f(π/6)=asin(π/3)+bcos(π/3)+1=(√3/2)*a+b/2+1=(3√3)/2+1.(2)
解方程组(1)(2)得a=3,b=0或a=3/2,b=3√3/2
因为ab≠0
所以a=3/2,b=3√3/2
由前面有:
f(x)=3sin(2x+π/3)+1
令f(x)=3sin(2x+π/3)+1=0
得2x+π/3=2kπ+arcsin(-1/3)或2x+π/3=2kπ+π-arcsin(-1/3)
所以x=kπ-π/6-arcsin(1/3)/2或x=kπ+π/3+arcsin(1/3)/2
因为α≠β+kπ(k∈z),且α、β是方程f(x)=0的两个根
可以取α=5π/6-arcsin(1/3)/2,β=π/3+arcsin(1/3)/2
所以tan(α+β)=tan(5π/6+π/3)=tan(7π/6)=tan(π/6)=√3/3
f(x)=asinωx+bcosωx+1(ab≠0,ω>0)的周期为π,f(x)的最大值为4,且f(π/6)=(3√3)
设函数f(x)=asinωx+bcosωx(ω>0)已知函数f(x)的最小正周期为π 切当x=π/6是f(x)取的最大值
已知函数f(x)=asinωx+bcosωx(ω>0,a,b不全为零)的最小正周期为2,且f(1/4)=根号3,求f(x
设f(x)=asinωx+bcosωx(ω>0)的周期T=π,最大值f(π12)=4.
已知定义在R上的函数f(x)=asin(ωx)+bcos(ωx),(其中ω>0,a>0,b>0)的周期为π且当x=π/1
已知函数f(x)=asin(πx+α)+bcos(πx+β)+1,且f(2006)=-1,则f(2007)的值为多少?
已知函数f(x)=asin(πx+α)+bcos(πx+β)+4,x∈R,且f(2011)=3,则求f(2012)的值
已知函数f(x)=Asinωx+Bcosωx.已知函数f(x)=Asinωx+Bcosωx...则f(x)最大值的M的取
f(x)=asin(πx+a)+bcos(πx+b),且f(2009)=3,求f(2010)
高中数学题已知函数f(x)=asin(πx+a)+bcos(πx+β),且f(2007)=3,则f(2008)的值是
已知函数f(x)=Asinψx+Bcosψx(其中A,B,ψ是实常数,ψ>0)的最小正周期为2,
已知函数f(x)=Asin(ωx+4分之π)(其中x∈R,A>0,ω>0)的最大值为2,最小正周期为8.(1)求函数f(