f(x)二阶导数小于0 f'(b)
f(x)在[0,1]具有二阶导数,f(x)的绝对值小于等于a,f(x)的二阶导数的绝对值小于等于b,a,b为非负常数
若在区间(a,b)内,函数f(x)的一阶导数f'(x)>0,二阶导数f''(x)
f(x)在[a,b]上连续,在(a,b)可导,且在(a,b)内f(x)的二阶导数小于0,证明f(x)是单调递减的 是知道
f(x)在[a,b]内2阶可导,f(x)二阶导数的绝对值小于等于M;有在(a,b)内部去等取得最小值
已知f(x)的二阶导数小于0,用拉格朗日定理证明f(X1+x2/2)>f(x1)+f(X2)/2,谢谢.
一个试卷上的高数题证明题:f(a)≥f(b+a),f(x)的二阶导数小于等于0,证明(af(a)+bf(b))/(a+b
设f(x)在区间[a,b]上具有二阶导数,且f'(a)f'(b)>0试证明
设f(x)在[a,b]上具有二阶导数 且f(a)=f(b)=0 f'(a)f'(b)>0 证明 至少存在一点
设函数f(x)在闭区间[a,b]上具有二阶导数,且f"(x)>0,证明∫(a,b)f(x)dx>f(
f(x)的二阶导数恒小于零,x1,x2属于0到正无穷,证明f(x1 x2) f(0)
f(x)在(a,b)上具有二阶连续导数又 f'(a)=f'(b)=0 证明:存在u属于(a,b) f(u)
若函数f(x)具有二阶导数,又设f(a)=f(c)=f(b),其中a