作业帮 > 数学 > 作业

设向量β可以被向量α1,α2,…αn线性表出,证明:α1,α2…αn线性无关的充分必要条件是表示系数唯一.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 05:30:51
设向量β可以被向量α1,α2,…αn线性表出,证明:α1,α2…αn线性无关的充分必要条件是表示系数唯一.
设向量β可以被向量α1,α2,…αn线性表出,证明:α1,α2…αn线性无关的充分必要条件是表示系数唯一.
证明: b可由向量a1,a2,...,as线性表示
方程组 (a1,a2,...,as)x=b 有解
所以 r(a1,a2,...,as)=r(a1,a2,...,as,b)
注: 将线性表示与方程组的解结合起来是常用手段

又 a1,a2,...,as线性无关
r(a1,a2,...,as)=s
r(a1,a2,...,as)=r(a1,a2,...,as,b)=s
方程组 (a1,a2,...,as)x=b 有唯一解
b可由向量a1,a2,...,as线性表示, 且表示法唯一.