奇函数f(x)在区间(-∞,0)上单调递减,且f(2)=0,则不等式(x-1)f(x+1)>0的解集为( )
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 04:09:43
奇函数f(x)在区间(-∞,0)上单调递减,且f(2)=0,则不等式(x-1)f(x+1)>0的解集为( )
A. (-2,-1)∪(1,2)
B. (-3,1)∪(2,+∞)
C. (-3,-1)
D. (-2,0)∪(2,+∞)
A. (-2,-1)∪(1,2)
B. (-3,1)∪(2,+∞)
C. (-3,-1)
D. (-2,0)∪(2,+∞)
∵函数f(x)是奇函数,在区间(-∞,0)上单调递减,且f (2)=0,
∴f (-2)=-f(2)=0,且在(0,+∞)上单调递减
故当x<-2或0<x<2 时,f(x)>0,当-2<x<0或x>2时,f(x)>0.
由不等式(x-1)•f(x+1)>0可得x-1与f(x+1)同号.
∴
x−1>0
f(x+1)>0或
x−1<0
f(x+1)<0
∴
x>1
x+1<−2或0<x+1<2或
x−1<0
x+1>2或−2<x+1<0
解不等式可得,-3<x<-1
∴不等式的解集为 (-3,-1)
故选C
∴f (-2)=-f(2)=0,且在(0,+∞)上单调递减
故当x<-2或0<x<2 时,f(x)>0,当-2<x<0或x>2时,f(x)>0.
由不等式(x-1)•f(x+1)>0可得x-1与f(x+1)同号.
∴
x−1>0
f(x+1)>0或
x−1<0
f(x+1)<0
∴
x>1
x+1<−2或0<x+1<2或
x−1<0
x+1>2或−2<x+1<0
解不等式可得,-3<x<-1
∴不等式的解集为 (-3,-1)
故选C
f(x)为定义在区间(-2,2)的奇函数,在区间(0,2)递减,则不等式f(x)-f(-x)>X的解集
函数f(x)是定义在R上的奇函数,且f(2)=0 f(x)在[0,1]上单调递增,在(1,+∞)上单调递减,不等式f(x
已知奇函数f(x)在(-∞,0)上单调递减,且f(2)=0,则不等式(x-1)f(x-1)>0的解集是( )
已知f(x)是定义在(-1,1)上的奇函数,它在区间[0,1)上单调递减,且f(1-a)+f(1-a^2)
已知f(x)是定义在(-1,1)上的奇函数,它在区间[0,1)上单调递减,且f(1+a)+f(1-a^2)
急等.设定义域在[-2,2]上的奇函数f(x)在区间[0,2]上单调递减,若f(1+m)+f(x)
已知R上的奇函数f(x)在区间(负无穷,0)上单调递增,且f(-2)=0,则不等式f(x)≤0的解集为?A【-2,2】
已知函数f(x)是定义在R上的单调奇函数,且f(1)=-2,(1)求证f(x)为单调递减函数
定义域在区间-2,2上的奇函数f(x),在区间(0,2]上单调递减.求不等式f(x)-f(-x)>x的解集
定义在R上的奇函数f(x)满足:①f(x)在(0,+∞)内单调递增②f(1)=0,则不等式(x-1)f(x)>0的解集为
函数的奇偶性设奇函数 f(x)在(0,+∞)上为增函数,且 f(1)=0,则不等式 f(x)-f(-x) / x
若函数f(x)=loga(2x2+x)(a>0且a≠1)在区间(0,12)内恒有f(x)>0,则f(x)的单调递减区间为