作业帮 > 数学 > 作业

如图,梯形ABCD中,AD//BC.点M是AD的中点,∠MBC=∠MCB,梯形ABCD是等腰梯形吗

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 18:11:05
如图,梯形ABCD中,AD//BC.点M是AD的中点,∠MBC=∠MCB,梯形ABCD是等腰梯形吗
如图,梯形ABCD中,AD//BC.点M是AD的中点,∠MBC=∠MCB,梯形ABCD是等腰梯形吗
梯形ABCD是等腰梯形,理由如下:
∵∠MBC=∠MCB
∴△MBC是等腰三角形
∴MB=MC
∵AD∥BC
∴∠AMB=∠MBC,∠DMC=∠MCB
∵∠MBC=∠MCB
∴∠AMB=∠DMC
又∵点M是AD的中点
∴AM=MD
∴△ABM≌△DCM﹙SAS﹚
∴AB=CD﹙全等三角形对应边相等﹚
即∶梯形ABCD是等腰梯形
希望可以帮到你!