最后一道高数题!
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 18:54:36
最后一道高数题!
先翻译下:用麦克劳林级数展开式(泰勒级数在x=0附近的展开式)去估算(保留3位有效数字)积分:∫(从0积到1/2)e^(-x^2)dx,跟任务1、问题8得到的答案进行比较.
用麦克劳林展开式将e^(-x^2)展开至第三项:e^(-x^2)=1-x^2+(1/2)x^4-……+[(-1)^n/(n!)]x^(2n)+……≈1-x^2+(1/2)x^4,则∫(从0积到1/2)e^(-x^2)dx≈∫(从0积到1/2)(1-x^2+(1/2)x^4)dx=[x-(1/3)x^3+(1/10)x^5]|(x=1/2)-[x-(1/3)x^3+(1/10)x^5]|(x=0)=1/2-1/24+1/320≈0.461
用麦克劳林展开式将e^(-x^2)展开至第三项:e^(-x^2)=1-x^2+(1/2)x^4-……+[(-1)^n/(n!)]x^(2n)+……≈1-x^2+(1/2)x^4,则∫(从0积到1/2)e^(-x^2)dx≈∫(从0积到1/2)(1-x^2+(1/2)x^4)dx=[x-(1/3)x^3+(1/10)x^5]|(x=1/2)-[x-(1/3)x^3+(1/10)x^5]|(x=0)=1/2-1/24+1/320≈0.461