已知椭圆x2a2+y2b2=1(a>b>0)的离心率为22,以该椭圆上的点和椭圆的左、右焦点F1、F2为顶点的三角形的周
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 13:07:24
已知椭圆
x
(1)设椭圆的半焦距为c,由题意知:
c a= 2 2,2a+2c=4( 2+1), 所以a=2 2,c=2, 又a2=b2+c2,因此b=2. 故椭圆的标准方程为 x2 8+ y2 4=1.(4分) 由题意设等轴双曲线的标准方程为 x2 m2− y2 m2=1(m>0), 因为等轴双曲线的顶点是椭圆的焦点,所以m=2, 因此双曲线的标准方程为 x2 4− y2 4=1.(8分) (2)证明:P(x0,y0), 则k1= y0 x0+2,k2= y0 x0−2. 因为点P在双曲线x2-y2=4上,所以x02−y02=4. 因此k1k2= y0 x0+2•
设椭圆C:x2a2+y2b2=1(a>b>0)的上顶点为A,椭圆C上两点P,Q在X轴上的射影分别为左焦点F1和右焦点F2
已知F1、F2分别为椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点,椭圆C上的点A(1,32)到F1、F2两点
已知椭圆C1:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,右顶点为A,P是椭圆C1上任意一点,设该
已知点P是椭圆x2a2+y2b2=1(a>b>0,xy≠0)上的动点,F1(-c,0)、F2(c,0)为椭圆的左、右焦点
已知椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1(-c,0),F2(c,0),若椭圆上存在点P使asi
已知椭圆C:x2a2+y2b2=1(a>b>0),F1,F2为其左、右焦点,P为椭圆C上除长轴端点外的任一点,△F1PF
(2013•临沂二模)x2a2+y2b2=1(a>b>0)如图,已知椭圆C:的左、右焦点分别为F1、F2,离心率为32,
已知F1,F2分别为椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点,过F1且垂直于x轴的直线交椭圆C于A、B两
已知椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1、F2,过F1作倾斜角为30°的直线与椭圆有一个交点P
(2014•宁波二模)已知椭圆Γ:x2a2+y2b2=1(a>b>0)的离心率为12,其右焦点F与椭圆Γ的左顶点的距离是
如图,已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的离心率为根号2/2,以该椭圆上的点和椭圆的左、右焦点F1
如图,已知F1,F2是椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点,点P在椭圆C上,线段PF2与圆x2+y2
|