作业帮 > 数学 > 作业

求曲线Z=X^2+Y^2与Z=2-根号(X^2+Y^2)所围立体体积

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/14 00:42:11
求曲线Z=X^2+Y^2与Z=2-根号(X^2+Y^2)所围立体体积
求曲线Z=X^2+Y^2与Z=2-根号(X^2+Y^2)所围立体体积
x² + y² = z
z = 2 - √(x² + y²) ==> √(x² + y²) = 2 - z ==> x² + y² = (2 - z)² = 4 - 4z + z²
z = 4 - 4z + z² ==> z² - 5z + 4 = 0 ==> (z - 4)(z - 1) = 0 ==> z = 1
∴交集为x² + y² = 1
Ω体积
= ∫∫∫Ω dV
= ∫(0→2π) dθ ∫(0→1) r dr ∫(r²→2 - r) dz
= 2π∫(0→1) r * (2 - r - r²) dr
= 2π∫(0→1) (2r - r² - r³) dr
= 2π(r² - r³/3 - r⁴/4):(0→1)
= 2π(1 - 1/3 - 1/4)
= 5π/6