设A,B是n级方阵,AB=BA=O,且秩(A^2)=秩(A),则秩(A+B)=秩(A)+秩(B)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 04:23:16
设A,B是n级方阵,AB=BA=O,且秩(A^2)=秩(A),则秩(A+B)=秩(A)+秩(B)
假设A是对角线方阵,那么根据
AB=BA=0,
可知,关于A的非零元对应的行列索引,B中相应的行列取值全零.
故秩(A+B)=秩(A)+秩(B)显然成立,
因为和式A把B中对秩没有贡献的全0行变更为非0行,对A+B的秩有一份贡献.
不知条件"秩(A^2)=秩(A)"如何利用?
搜索"秩(A^2)=秩(A)",可以获得幂等矩阵的性质.
但如果允许利用如下命题http://zhidao.baidu.com/question/223768962.html:
n阶矩阵A满足A^2=A,秩为r,证明存在可逆n阶矩阵P,使得PAP^-1=[Er,0](底下还有两个0)
那么结论针对一般的幂等矩阵也是成立的.
AB=BA=0,
可知,关于A的非零元对应的行列索引,B中相应的行列取值全零.
故秩(A+B)=秩(A)+秩(B)显然成立,
因为和式A把B中对秩没有贡献的全0行变更为非0行,对A+B的秩有一份贡献.
不知条件"秩(A^2)=秩(A)"如何利用?
搜索"秩(A^2)=秩(A)",可以获得幂等矩阵的性质.
但如果允许利用如下命题http://zhidao.baidu.com/question/223768962.html:
n阶矩阵A满足A^2=A,秩为r,证明存在可逆n阶矩阵P,使得PAP^-1=[Er,0](底下还有两个0)
那么结论针对一般的幂等矩阵也是成立的.
设A、B为任意n阶方阵,且BA=A+B,则AB=
设A,B是n阶方阵,满足AB=A-B,证明AB=BA
设A是mxn矩阵,B是nxm矩阵,且n>m,则|BA|=0.解析:由于BA是n阶方阵,秩r(BA)
设A与B都是n阶方阵.证明:如果AB=O,那么 秩A+秩B≤n.
设A,B均为n级方阵,A+B=AB.证明秩A=秩B
A.B为n阶方阵且A+B+AB=0,证明AB=BA?
设A,B为n(n>=2) 阶方阵,则必有 1、|A+B|=|A|+|B| 2、AB=BA 3、|A|B||=|B|A||
现代题,设A,B为n阶方阵,证明(A+B)(A-B)=A∧2-B∧2的充要条件是AB=BA
设A、B都是n阶非零方阵,且AB=0,则A、B的秩()
设A,B均为n阶方阵,且A平方=A,B平方=B,证明(A+B)^2=A+B的充分必要条件是AB+BA=0
设A.B都是n级矩阵,且A+B=AB,求证:AB=BA
设A、B是n阶方阵,则必有|A'B|=|BA|,为什么?