大学函数极限问题f在[0,2a]上连续,f(0)=f(2a).求证:存在t∈[0,a]使得f(t)=f(t+a)
设函数 f(x)在[0,2a]上连续,且 f(0) = f(2a),证明:存在Z属于[0,a),使得 f(Z) = f(
f(x)在【0,a】上连续可导,且f(a)=0.证明:存在一点t属于(0,a),使f(t)+tf'(t)=0
函数f(x)在区间[0,2a]上连续,且f(0)=f(2a),证明;在[0,a]上至少存在一点使得f(x)=f(x+a)
函数f,g在[a,b]连续,(a,b)可导,f(a)=f(b)=0,证明存在c∈(a,b)使得f'(
设f(x)在[-a,a]上为连续奇函数,则F(x)=∫(0,x)f(t)dt ( )
函数f(x)在[0,1]上连续 在(0,1)内可导 且f(0)=0 证明 存在a 使得af'(a)+2f(a)=f'(a
设函数f(x)在闭区间[0,1]上连续,且f(0)=f(1),证明至少存在一点a属于[0,1],使得f(a+1/2)=f
f(x)在[a,b]上连续,在(a,b) 内可导,且 f '(x)≤0,F(x)=1/(x-a)∫(x-a)f(t)dt
设 f(t)>0且是连续偶函数,又函数F(x)=∫|x-t|f(t)dt定积分上下限为-a、a,x∈[-a,a],讨论F
f(x)=xlnx,求f(x)在[t,t+a](t>0)上的最小值!
设函数f(x)在[A,B]上连续,证明lim(h→0) 1/h*∫(x,a)[f(t+h)-f(t)]dt=f(x)-f
b>a>0,f(x)在[a,b]上连续,在(a,b)内可导,证明,存在n属于(a,b)使得f(a)-f(b)=n(lna