线性代数对角化问题:A为正定阵,B为实对称阵,证明:一定存在可逆矩阵T使得A和B都可以通过T做合同变换成为对角阵.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 16:46:25
线性代数对角化问题:
A为正定阵,B为实对称阵,证明:一定存在可逆矩阵T使得A和B都可以通过T做合同变换成为对角阵.
A为正定阵,B为实对称阵,证明:一定存在可逆矩阵T使得A和B都可以通过T做合同变换成为对角阵.
(A'表示A的转置矩阵)
由于A是正定矩阵,A与E合同,故一定存在可逆矩阵C,使C'AC = E.因为C'BC是实对称矩阵,经正交变换可化为对角形,故一定存在正交矩阵D,使D'(C'BC)D为对角阵.
所以,设T = CD,则T可逆,T'AT = D'(C'AC)D = D'D = E,T'BT = D'(C'BC)D为对角阵.
得证.
注:(1)C'BC是实对称矩阵,因为(C'BC)' = C'B'C'' = C'BC.
(2)T可逆,因为|T| = |CD| = |C||D|不等于0.
由于A是正定矩阵,A与E合同,故一定存在可逆矩阵C,使C'AC = E.因为C'BC是实对称矩阵,经正交变换可化为对角形,故一定存在正交矩阵D,使D'(C'BC)D为对角阵.
所以,设T = CD,则T可逆,T'AT = D'(C'AC)D = D'D = E,T'BT = D'(C'BC)D为对角阵.
得证.
注:(1)C'BC是实对称矩阵,因为(C'BC)' = C'B'C'' = C'BC.
(2)T可逆,因为|T| = |CD| = |C||D|不等于0.
设n阶矩阵A对称正定,n阶矩阵B为对称矩阵,证明存在合同变换矩阵P,使得P'AP与P'BP均为对角矩阵
实对称矩阵对角化问题设A为3介实对称矩阵,可知存在正交阵P,使得P'-1AP=B,B为其特征值构成的对角矩阵,为什么求出
A,B为n阶实对称矩阵,且B是正定矩阵,证明:存在实可逆矩阵C使得C'AC和C'BC都是实对角矩阵.C'表示C的转置
a为正定矩阵,a-b为半正定矩阵,为什么使a,b合同对角化的可逆矩阵s相等?
A为正定矩阵B为同阶实对称矩阵,证明A+iB可逆
AB均为n阶实对称阵,A正定,证明存在n阶实可逆阵P使P’AP和P‘BP均为对角阵(P‘为转置矩阵)
A,B为正定矩阵,C是可逆矩阵.证明A-B为是对称矩阵.
矩阵同时对角化的问题矩阵A、B可交换,且都可对角化,证明存在可逆矩阵P使得,P^(-1)AP 和 p^(-1)AP 都是
设A,B为实对称矩阵,且B正定,则存在S及对称矩阵D,使得
满秩非对称矩阵A对角化,是否一定存在正交阵p使得p的逆乘A再乘p等于对角阵
设A、B均为N阶实对称正定矩阵,证明:如果A—B正定,则B的逆阵减去A的逆阵正定.
请问:A,B均为n阶实对称矩阵,且都正定,那么AB一定是:A对称矩阵B正定矩阵C可逆矩阵D正交矩阵