作业帮 > 数学 > 作业

线性代数对角化问题:A为正定阵,B为实对称阵,证明:一定存在可逆矩阵T使得A和B都可以通过T做合同变换成为对角阵.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 16:46:25
线性代数对角化问题:
A为正定阵,B为实对称阵,证明:一定存在可逆矩阵T使得A和B都可以通过T做合同变换成为对角阵.
线性代数对角化问题:A为正定阵,B为实对称阵,证明:一定存在可逆矩阵T使得A和B都可以通过T做合同变换成为对角阵.
(A'表示A的转置矩阵)
由于A是正定矩阵,A与E合同,故一定存在可逆矩阵C,使C'AC = E.因为C'BC是实对称矩阵,经正交变换可化为对角形,故一定存在正交矩阵D,使D'(C'BC)D为对角阵.
所以,设T = CD,则T可逆,T'AT = D'(C'AC)D = D'D = E,T'BT = D'(C'BC)D为对角阵.
得证.
注:(1)C'BC是实对称矩阵,因为(C'BC)' = C'B'C'' = C'BC.
(2)T可逆,因为|T| = |CD| = |C||D|不等于0.