数列{an}中,a1=1sn是{an}的前n项和,当n大于等于2是sn=an[1-2/sn]求证{1/sn}是等差数列
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 10:32:47
数列{an}中,a1=1sn是{an}的前n项和,当n大于等于2是sn=an[1-2/sn]求证{1/sn}是等差数列
Sn = an ( 1 - 2 / Sn ) = ( Sn - S(n-1)) ( 1 - 2 / Sn )
= Sn - S(n-1) - 2 + 2 S(n-1) / Sn
因为 S1 = a1 = 1 ,当 n > 2 时,Sn != 0 ,
所以 0 = - 1 - 2 / S(n-1) + 2 / Sn ,
所以 1 / Sn - 1 / S(n-1) = 1/2 ,n = 2 ,3 ,4 …
所以 {1/Sn}是等差数列
= Sn - S(n-1) - 2 + 2 S(n-1) / Sn
因为 S1 = a1 = 1 ,当 n > 2 时,Sn != 0 ,
所以 0 = - 1 - 2 / S(n-1) + 2 / Sn ,
所以 1 / Sn - 1 / S(n-1) = 1/2 ,n = 2 ,3 ,4 …
所以 {1/Sn}是等差数列
已知数列{an}的前n项和为Sn,且满足Sn=Sn-1/2Sn-1 +1,a1=2,求证{1/Sn}是等差数列
已知数列{an}的前n项和为Sn,且满足an+2Sn*Sn-1=0,a1=1/2.求证:{1/Sn}是等差数列
已知数列an中,a1=1,当n大于等于2时,sn=an(1-2/sn).求证1/sn是等差数列
设Sn是数列an的前n项和,已知a1=1,an=-Sn*Sn-1,(n大于等于2),则Sn=
数列an中,a1=1,当n大于等于2时,其前n项和满足sn^2=an(sn-1) 证明:数列{1/sn}是等差数列
已知数列{an}中.a1=1,n大于等于2时.其前n项和Sn满足Sn^2=an(Sn-1/2).求证:数列{1/Sn}是
数列an中,a1=1,当n大于=2时,sn满足sn方=an(sn-1) 证明1/sn是等差数列
数列{an}中,a1=1,当n大于等于2时,其前n项的和Sn,满足Sn的平方=an(Sn-1)
已知数列an的前n项和为Sn,且an+2Sn*Sn-1=0,a1=1/2,求证1/SN是等差数列,求数列SN的的通项公式
在数列an中,Sn是数列an前n项和,a1=1,当n≥2时,sn^2=an(Sn-1/2) (1)证明1/Sn为等差数列
数列前n项和为sn,a1=1,an+sn是公差为2的等差数列,求an-2是等比数列,并求sn
已知数列An的前n项和为Sn.且满足an+2Sn*Sn-1=0=2>,a1=1/2,求证1/Sn是等差数列,求通项an的