正方形ABCD的边CD在正方形ECGF的边CE上,BCD三点在一条直线上,边长分别为2,3.若把这个图形沿着PA,PF剪
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 15:38:34
正方形ABCD的边CD在正方形ECGF的边CE上,BCD三点在一条直线上,边长分别为2,3.若把这个图形沿着PA,PF剪成三
(1)观察猜想AP与PF之间的数量关系及位置关系,并说明理由.
(2)图中是否存在通过旋转、平移、反射等变换能够互相重合的两个三角形?若存在,请说明变换过程;若不存在,请说明理由.
(3)若把这个图形沿着PA、PF剪成三块,请你把它们拼成一个大正方形,在原图上画出示意图,并请求出这个大正方形的周长.
(1)观察猜想AP与PF之间的数量关系及位置关系,并说明理由.
(2)图中是否存在通过旋转、平移、反射等变换能够互相重合的两个三角形?若存在,请说明变换过程;若不存在,请说明理由.
(3)若把这个图形沿着PA、PF剪成三块,请你把它们拼成一个大正方形,在原图上画出示意图,并请求出这个大正方形的周长.
(1)猜想PA=PF;
理由:∵正方形ABCD、正方形ECGF,
∴AB=BC=2,CG=FG=3,∠B=∠G=90°,
∵PG=2,
∴BP=2+3-2=3=FG,AB=PG,
∴△ABP≌△PGF,
∴PA=PF.
(2)存在,是△ABP和△PGF,
把△ABP先向右平移5个单位,使AB在GF边上,B与G重合,
再绕G点逆时针旋转90度,就可与△PGF重合.(答案不唯一)
(3)如图:
S大正方形的面积=S正方形ABCD的面积+S正方形ECGF的面积=4+9=13
理由:∵正方形ABCD、正方形ECGF,
∴AB=BC=2,CG=FG=3,∠B=∠G=90°,
∵PG=2,
∴BP=2+3-2=3=FG,AB=PG,
∴△ABP≌△PGF,
∴PA=PF.
(2)存在,是△ABP和△PGF,
把△ABP先向右平移5个单位,使AB在GF边上,B与G重合,
再绕G点逆时针旋转90度,就可与△PGF重合.(答案不唯一)
(3)如图:
S大正方形的面积=S正方形ABCD的面积+S正方形ECGF的面积=4+9=13
如图所示,正方形ABCD的边CD在正方形ECGF的边CE上,B.C.G三点在一条直线上,且边长分别速度啊
如图1,已知正方形ABCD的边CD在正方形ECGF的边CE上,B、C、G三点在一条直线上,且边长分别为2和3,在BG上截
如图,正方形ABCD的边CD在正方形ECGF的边CE上,B、C、G三点在一条直线上,且边长分别为2和3,在BG上截取GP
如图,正方形ABCD的边CD在正方形ECGF的边CE上,B、C、G三点在一条直线上,且边长分别为5和12.(1)连接AF
如图,正方形ABCD的边CD在正方形ECGF的边CE上,B、C、G三点在一条直线上,且边长分别为4和6.
如图,正方形ABCD的边CD在正方形ECGF的边CE上,B.C.G三点在一条直线上.
如图,正方形ABCD的边CD在正方形ECGF的边CE上,B,C,G三点共线,且边长分别为2cm和3cm,在BG有一动点P
如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE.DG 证明
我们规定正方形四条边都相等,四个角都等于90°,如图,正方形ABCD的边CD在正方形ECGF的边CE上
如图所示,正方形ABCD的边CD在正方形ECGF的边CE上,连结BE、DG.观察猜想BE与DG之间的大小关系与位置关系,
已知,如图,正方形ABCD的边CD在正方形ECGF的边CE上,连结BE,DG,求证:BE=DG
将边长分别为a,b的正方形ABCD,正方形BEFG拼成如图所示的图形,且G,B,C在一条直线上,求阴影部分的面积