作业帮 > 数学 > 作业

一个数列的前n项和Sn=(3/2)^n-1,怎么判断出它一定是等比数列?

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 15:48:33
一个数列的前n项和Sn=(3/2)^n-1,怎么判断出它一定是等比数列?
一个数列的前n项和Sn=(3/2)^n-1,怎么判断出它一定是等比数列?
ls的验证不严密,要注意n=1的情况!
a1=s1=1/2
当n>1,an=Sn-Sn-1=[(3/2)^n-1]-[(3/2)^(n-1)-1]=(3/2)^n-(3/2)^(n-1)
=-(1/2)*(3/2)^(n-1)
对n>=1,an+1/an=[-(1/2)*(3/2)^n]/[-(1/2)*(3/2)^(n-1)]=3/2
所以是等比数列