用数学归纳法证明完全平方公式 (n+1)^2=n^2+2n+1
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/06 09:56:58
用数学归纳法证明完全平方公式 (n+1)^2=n^2+2n+1
数学归纳法就是分三步,
1,验证对于n=1时成立
2,假设n=k时成立
3,验证n=k+1时成立
则对于所有n都成立.
因此步骤如下:
1,当n=1时,(1+1)^2=2^2=4,1^2+2*1+1=4,(1+1)^2=1^2+2*1+1,成立.
2,假设n=k,则有(k+1)^2=k^2+2k+1
3,当n=k+1时,[(k+1)+1]^2=(k+2)*(k+2)=k^2+4k+4
=(k^2+2k+1)+(2k+2)+1
=(k+1)^2+2(k+1)+1
所以对任意正整数n,有(n+1)^2=n^2+2n+1成立.
1,验证对于n=1时成立
2,假设n=k时成立
3,验证n=k+1时成立
则对于所有n都成立.
因此步骤如下:
1,当n=1时,(1+1)^2=2^2=4,1^2+2*1+1=4,(1+1)^2=1^2+2*1+1,成立.
2,假设n=k,则有(k+1)^2=k^2+2k+1
3,当n=k+1时,[(k+1)+1]^2=(k+2)*(k+2)=k^2+4k+4
=(k^2+2k+1)+(2k+2)+1
=(k+1)^2+2(k+1)+1
所以对任意正整数n,有(n+1)^2=n^2+2n+1成立.
用数学归纳法证明:(n+1)+(n+2)+…+(n+n)=n(3n+1)2
用数学归纳法证明1+2+3+…+2n=n(2n+1)
不用数学归纳法证明或推导1平方+2平方+...n平方 的公式
用数学归纳法证明:-1+3-5+...+(-1)n*(2n-1)=(-1)n*n
数学归纳法证明 < {(n+1)/2 }的n 次方
用数学归纳法证明(n+1)(n+2)…(n+n)=2^n*1*3*…*(2n-1)(n∈N+)在线等
用数学归纳法证明(n+1)(n+2)…(n+n)=2^n*1*3*…*(2n-1)(n∈N+)
用数学归纳法证明 (n+1)(n+2)…(n+n)=2^n·1·3·……·(2n-1)(n∈N*),从假定当n=k时公式
用数学归纳法证明:1的平方+2的平方+3的平方+…+n的平方=n(n+1)(2n+1)/6
用数学归纳法证明:13+23+33+……+n3=[n(n+1)/2]平方
数学归纳法证明,求助用数学归纳法证明:[13^(2n)-1] Mod 168=0
用数学归纳法证明1+4+9+...+n²=1/6n(n+1)(2n+1)