已知圆O的半径为1,PA,PB为该圆的两条切线,AB为切点.那么向量PA点乘向量PB的最小值为?
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 16:01:40
已知圆O的半径为1,PA,PB为该圆的两条切线,AB为切点.那么向量PA点乘向量PB的最小值为?
这是2010年高考题全国卷里的一道选择题.
【解法一】
设PA=PB=X(x>0),∠APO=α,
则∠APB=2α,由勾股定理得PO=根号(1+x^2),
sinα=1/根号(1+x^2),
向量PA•向量PB=|PA|•|PB|cos2α=x^2(1-2sin^2α)={x^2(x^2-1)}/(1+x^2)
=(x^4-x^2)/(1+x^2),
令向量PA•向量PB=y,
则y==(x^4-x^2)/(1+x^2),
即x^4-(1+y)x^2-y=0,
由于x^2是实数∴△={-(1+y)}^2-4×1×(-y)≥0,
y^2+6y+1≥0
解得y≤-2√2-3或y≥-3+2√2
x^2>0,设x^2=t,
方程x^4-(1+y)x^2-y=0可以化为t^2-(1+y)t-y=0,
根据韦达定理得:t1+t2=1+y,t1t2=-y,
当y≤-2√2-3时,t1+t20,
这时t1,t2都是负值,因为x^2=t>0,所以不合题意,舍去.
当y≥-3+2√2时,t1+t2>0,t1t2>0,
这时t1,t2都是正值,符合题意.
故(向量PA•向量PB)min=-3+2√2
【解法二】
以圆心为坐标原点建立直角坐标系:
可以先把图作出,那么PA向量*PB向量=PA*PB*cosθ
连接OP(O即是原点,也是圆的圆心)
那么sin(θ/2)=1/PO
∴cosθ=1-2(sin(θ/2))^2=1-2/PO^2
∴PA向量*PB向量=2-PA*PB
又∵PA*PB=PO^2-OA^2=PO^2-1
∴PA向量*PB向量=(PO^2-1)*(1-2/PO^2)=PO^2+2/PO^2-3
用基本不等式:当PO=二的四分之一次方时,(PA向量*PB向量)min=-3+2根号2
【解法一】
设PA=PB=X(x>0),∠APO=α,
则∠APB=2α,由勾股定理得PO=根号(1+x^2),
sinα=1/根号(1+x^2),
向量PA•向量PB=|PA|•|PB|cos2α=x^2(1-2sin^2α)={x^2(x^2-1)}/(1+x^2)
=(x^4-x^2)/(1+x^2),
令向量PA•向量PB=y,
则y==(x^4-x^2)/(1+x^2),
即x^4-(1+y)x^2-y=0,
由于x^2是实数∴△={-(1+y)}^2-4×1×(-y)≥0,
y^2+6y+1≥0
解得y≤-2√2-3或y≥-3+2√2
x^2>0,设x^2=t,
方程x^4-(1+y)x^2-y=0可以化为t^2-(1+y)t-y=0,
根据韦达定理得:t1+t2=1+y,t1t2=-y,
当y≤-2√2-3时,t1+t20,
这时t1,t2都是负值,因为x^2=t>0,所以不合题意,舍去.
当y≥-3+2√2时,t1+t2>0,t1t2>0,
这时t1,t2都是正值,符合题意.
故(向量PA•向量PB)min=-3+2√2
【解法二】
以圆心为坐标原点建立直角坐标系:
可以先把图作出,那么PA向量*PB向量=PA*PB*cosθ
连接OP(O即是原点,也是圆的圆心)
那么sin(θ/2)=1/PO
∴cosθ=1-2(sin(θ/2))^2=1-2/PO^2
∴PA向量*PB向量=2-PA*PB
又∵PA*PB=PO^2-OA^2=PO^2-1
∴PA向量*PB向量=(PO^2-1)*(1-2/PO^2)=PO^2+2/PO^2-3
用基本不等式:当PO=二的四分之一次方时,(PA向量*PB向量)min=-3+2根号2
已知圆O半径是1,PA PB为该圆的两条切线,A,B为两切点,那么向量PA*向量PB的最小值是多少?
已知圆O的半径为1,PA PB为该圆的两条切线,A B为切点,那么“向量”PA点乘PB的最小值是多少呢?
已知圆O的半径为1,PA,PB为该圆的两条切线.A,B为两切点.那么(向量)PA×(向量)PB的最小值为多少?A,-4+
已知圆O的半径为1,PA,PB为该圆的两条切线.A,B为两切点.那么(向量)PA×(向量)PB的最小值为多少?谢
已知圆O的半径为1,PA,PB为该圆的两条切线.A,B为两切点.那么(向量)PA×(向量)PB的最小值为多少?
两道不等式的题已知圆o的半径为1,PAPB为两条切线,AB为两切点,则PA向量点乘PB向量的最小值为()已知0第二小题打
已知圆O的半径为1,PA、PB为该圆的两条切线,A、B 为两切点,那么PA*PB的最小值为?
已知圆O的半径为1,PA,PB为圆的两条切线,A,B为两切点,那么→PA* →PB最小值为?
已知圆o的半径为1pa,pb为圆的两条切线,a,b为切点(1)设∠apo=θ,用θ表示PA·PB(2)求PA·PB的范围
如图,已知PA、PB是圆O的两条切线,A、B为切点,
已知曲线x^2=4y,P为直线y=-1上任意一点,PA,PB为该曲线的两条切线,A,B为切点,则向量PA*向量PB=
PA、PB是圆O的两条切线,A、B为切点,直线OP交圆O于点D、E,交AB于点C,已知PA=4,PD=2求半径OA的长?