作业帮 > 数学 > 作业

已知双曲线c:x^2/a^2-y^2/b^2=1(a>0,b>0)的两个焦点为f1(-2,0),f2(2,o)点p(3,

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 01:55:25
已知双曲线c:x^2/a^2-y^2/b^2=1(a>0,b>0)的两个焦点为f1(-2,0),f2(2,o)点p(3,根号7)在双曲线C上
(1)求双曲线C的方程
(2)记O为坐标原点,过点Q(0,2)的直线L与双曲线C相交于不同的两点E、F,若△OEF的面积为2又根号2,求直线L的方程
已知双曲线c:x^2/a^2-y^2/b^2=1(a>0,b>0)的两个焦点为f1(-2,0),f2(2,o)点p(3,
已知双曲线c:x²/a²-y²/b²=1(a>0,b>0)的两个焦点为f1(-2,0),f2(2,o)点p(3,√7)在双曲线C上
(1)求双曲线C的方程
依题意
焦点c=±2
由c²=a²+b²=4
得双曲线方程为x²/a²-y²/(4-a²)=1 (0<a²<4)
将点p(3,√7)代入上式,得
9/a²-7(4-a²)=1
解得a²=18(舍去)或a²=2 满足条件
故所求双曲线C的方程为
x²/2-y²/2=1
(2)记O为坐标原点,过点Q(0,2)的直线L与双曲线C相交于不同的两点E、F,若△OEF的面积为2√2,求直线L的方程
依题意,∵直线L:y=kx+b 过点Q(0,2)可得b=2
即可设直线l的方程为y=kx+2,代入双曲线C的方程并整理
(1-k²)x²-4kx-6=0.①
∵直线L与双曲线C相交于不同的两点E、F,
∴1-k²≠0
∴△=(-4k)²+4×6(1-k²)>0
解得k²≠±1,-√3<k<√3
∴k∈(-√3)∪(-1,1) ∪(1,√3).②
设E(x1,y1),F(x2,y2),则由①式得
x1+x2=4k/(1-k²)
x1x2=6/(1-k²)
代入两点间的距离公式,于是
|EF|=√[(x1-x2)²+(y1-y2)²]
=√[(1-k²)(x1-x2)²]
=√(1-k²)√[(x1+x2)²-4x1x2]
=√(1-k²)[2√2√(3-k²)]/|1-k²|
而原点O到直线l的距离d=2/√(1+k²)
∴SΔOEF=(1/2)d×|EF|
=(1/2)×(2/√(1+k²))×(√(1-k²)[2√2√(3-k²)]/|1-k²|)
=[2√2√(3-k²)]/|1-k²|
若SΔOEF=2√2
即[2√2√(3-k²)]/|1-k²|=2√2
k²×k²-k²-2=0
k²(k²-1)=2
解得k=±√2,满足②.
故满足条件的直线L有两条,其方程分别为
y=√2x+2和y=-√2x+2