已知数列{an}前n项和为sn=2^(n+2)-4 设Bn=an*log2(an) 求数列b的前n项和
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 14:59:49
已知数列{an}前n项和为sn=2^(n+2)-4 设Bn=an*log2(an) 求数列b的前n项和
a1=s1=2^(1+2)-4=4
sn=2^(n+2)-4
s(n-1)=2^(n+1)-4
an=sn-s(n-1)
an=2^(n+2)-4-[2^(n+1)-4]
=2^(n+2)-2^(n+1)
=2*2^(n+1)-2^(n+1)
=2^(n+1)
an=2^(n+1)
当n=1时,也符合
Bn=an*log2(an)
=2^(n+1)log2[2^(n+1)]
=(n+1)*2^(n+1)
b1=2*2^2
b2=3*2^3
.
bn=(n+1)*2^(n+1)
Sbn=b1+b2+b3+.+bn
=2*2^2+3*2^3+.+(n+1)*2^(n+1)
2Sbn=2*2^3+3*2^4+.+(n+1)^(n+2)
Sbn-2Sbn=2*2^2+2^3+2^4+.+2^(n+1)-(n+1)*2^(n+2)
-Sbn=8+8*[1-2^(n-1)]/(1-2)-(n+1)*2^(n+2)
-Sbn=8+8*[2^(n-1)-1]-(n+1)*2^(n+2)
-Sbn=8+8*2^(n-1)-8-(n+1)*2^(n+2)
-Sbn=8*2^(n-1)-(n+1)*2^(n+2)
-Sbn=2^(n+2)-(n+1)*2^(n+2)
Sbn=(n+1)*2^(n+2)-2^(n+2)
Sbn=(n+1-1)*2^(n+2)
Sbn=n*2^(n+2)
sn=2^(n+2)-4
s(n-1)=2^(n+1)-4
an=sn-s(n-1)
an=2^(n+2)-4-[2^(n+1)-4]
=2^(n+2)-2^(n+1)
=2*2^(n+1)-2^(n+1)
=2^(n+1)
an=2^(n+1)
当n=1时,也符合
Bn=an*log2(an)
=2^(n+1)log2[2^(n+1)]
=(n+1)*2^(n+1)
b1=2*2^2
b2=3*2^3
.
bn=(n+1)*2^(n+1)
Sbn=b1+b2+b3+.+bn
=2*2^2+3*2^3+.+(n+1)*2^(n+1)
2Sbn=2*2^3+3*2^4+.+(n+1)^(n+2)
Sbn-2Sbn=2*2^2+2^3+2^4+.+2^(n+1)-(n+1)*2^(n+2)
-Sbn=8+8*[1-2^(n-1)]/(1-2)-(n+1)*2^(n+2)
-Sbn=8+8*[2^(n-1)-1]-(n+1)*2^(n+2)
-Sbn=8+8*2^(n-1)-8-(n+1)*2^(n+2)
-Sbn=8*2^(n-1)-(n+1)*2^(n+2)
-Sbn=2^(n+2)-(n+1)*2^(n+2)
Sbn=(n+1)*2^(n+2)-2^(n+2)
Sbn=(n+1-1)*2^(n+2)
Sbn=n*2^(n+2)
已知数列{an}的前n项和为Sn,且2Sn=2-(2n-1)an(n属于N*)(1)设bn=(2n+1)Sn,求数列{b
已知数列an的前n项和Sn=n^2,设bn=an/3^n,记数列bn的前n项和为Tn.
已知数列{an}的前n项和sn=n^2,设bn=an/3^n,记数列{bn}的前n项和为Tn
已知数列an的前n项和Sn=n^2,设bn=an/3n,记数列bn的前n项和为Tn
已知数列{an}的前n项和为Sn,且Sn=2n^2+n,n∈N*,数列{bn}满足an=4log2(bn),n∈N*
已知数列{an},前n项和Sn=2n-n^2,an=log5^bn,其中bn>0,求数列{bn}的前n项和
数列{an}的前n项和为Sn=3an+2 设bn=n 求数列{an·bn}的和Tn
设数列{An}的前n项和为Sn,已知A1=1,Sn+1=4An+2 求:(1)设bn=An+1-2An,证明数列{bn}
已知数列{an}的通项公式an=log2[(n+1)/(n+2)](n∈N),设其前n项的和为Sn,则使Sn
已知数列{an}的前n项和sn=10n-n^2(n属于N*),求数列{an绝对值}的前n项和Bn
已知数列{an} 前n项和Sn=2n-n^2 .an=log5bn.其中bn>0.求数列{bn}的前n项和
已知数列an,前n项和Sn=2n-n^2,an=log5bn,其中bn>0,求数列(bn)的前n项和