作业帮 > 数学 > 作业

二阶微分方程验证y1=cos(wx)及y2=sin(wx)都是微分方程y'' + w^2y = 0的解,并写出该方程的通

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/14 01:25:45
二阶微分方程
验证y1=cos(wx)及y2=sin(wx)都是微分方程y'' + w^2y = 0的解,并写出该方程的通解.
二阶微分方程验证y1=cos(wx)及y2=sin(wx)都是微分方程y'' + w^2y = 0的解,并写出该方程的通
将y1=cos(wx)代入有;
dy1=-wsin(wx)
d^2y1=-w^2cos(wx)
所以
y''+w^2y
=-w^2cos(wx)+w^2cos(wx)
=0
所以是方程解
将y2=sin(wx)代入
dy2=wcos(wx)
d^2y2=-w^2sin(wx)
所以
y''+w^2y
=-w^2sin(wx)+w^2sin(wx)
=0
所以也是方程的解
很容易知道函数y1和函数y2是线性无关的,可由朗斯基行列式得到:
所以方程的通解是;
y=C1cos(wx)+C2sin(wx)
(C1,C2是常数)