作业帮 > 数学 > 作业

设抛物线C:y^2=4x的焦点为F,直线l过F且与C交于A,B两点.若|AF|=3|BF|,则l的方程为()

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/14 06:12:42
设抛物线C:y^2=4x的焦点为F,直线l过F且与C交于A,B两点.若|AF|=3|BF|,则l的方程为()
设抛物线C:y^2=4x的焦点为F,直线l过F且与C交于A,B两点.若|AF|=3|BF|,则l的方程为()
抛物线C的焦点(1,0),准线为 x=-1;
设直线方程为 y=k(x-1),代入C方程:k²(x-1)²=4x,即 k²x²-(2k²+4)x+k²=0;
设直线与抛物线交点横坐标 xa、xb,则 xa+xb=2 +4/k²,xa*xb=1;
由抛物线特性可知,|AF|=xa+1,|BF|=xb+1;
所以 xa+1=3(xb+1),xa+xb=4xb+2=2 +4/k²;故 xb=1/k²,xa=3xb+2=3/k² +2;
xa*xb=(1/k²)*(3/k² +2)=1;解得 1/k²=1/3(负根舍去),k=±√3;
直线 l 的方程为:y=±√3(x-1);