已知三角形abc中,a,b,c,分别是角A,B,C所对的边,且4sin^2B+C/2-cos2A=2/7,求角A的度数
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 01:09:45
已知三角形abc中,a,b,c,分别是角A,B,C所对的边,且4sin^2B+C/2-cos2A=2/7,求角A的度数
4sin^2((B+C)/2)-cos2A=7/2,
A+B+C=180度,
B+C=180-A,
(B+C)/2=90-A/2,
sin[(B+C)/2]=sin(90-A/2)=cos(A/2),
sin^2[(B+C)/2]=cos^2(A/2),
即有,
4*cos^2(A/2)-cos2A=7/2,
而,2cos^2(A/2)-1=cosA,
∴4cos^2(A/2)-2=2cosA,
4cos^2(A/2)-2-cos2A=7/2-2,
2cosA-(2cos^2(A)-1=7/2-2,
4cos^2(A)-4cosA+1=0,
(2cosA-1)^2=0,
2cosA=1,
cosA=1/2,
A=60度,
A+B+C=180度,
B+C=180-A,
(B+C)/2=90-A/2,
sin[(B+C)/2]=sin(90-A/2)=cos(A/2),
sin^2[(B+C)/2]=cos^2(A/2),
即有,
4*cos^2(A/2)-cos2A=7/2,
而,2cos^2(A/2)-1=cosA,
∴4cos^2(A/2)-2=2cosA,
4cos^2(A/2)-2-cos2A=7/2-2,
2cosA-(2cos^2(A)-1=7/2-2,
4cos^2(A)-4cosA+1=0,
(2cosA-1)^2=0,
2cosA=1,
cosA=1/2,
A=60度,
在三角形ABC中,角A,B,C所对的边分别为a,b,c,且4sin平方2分之B+C-cos2A=2分之7,内角A的度数为
三角形ABC中,角ABC所对的边分别为a,b,c,且cosA=1/3.求[sin(B+C)/2]^2+cos2A
在三角形ABC中a,b,c分别为角A,B,C的对边4sin∧2b+c/2-cos2A=7/2(1)求角A的度数(2)若a
在三角形ABC中,角A,B,C所对的边分别为a,b,c,且COSA=4/5 1,求sin^2(B+C)/2+cos2A的
在三角形ABC中,a、b、c分别为角A、B、C的对边,4sin方*B+C/2-cos2A=7/2
在三角形ABC中,a,b,c是角A,B,C的对边,4sin平方(B+C)/2-cos2A=7/2.问(1)求角A的度数.
已知△ABC的三个内角分别是A,B,C,且4sin^2 * B+C/2 - cos2A=7/2,求内角A的度数
三角形ABC中,a,b,c分别是内角A,B,C所对边的边长,且4sin的平方乘以2分之B+C-cos2A=2分之7.求内
在三角形ABC中,a.b.c分别是A.B.C的对边且8sin(A+B)/2∧2-2cos2A=7 (1)求角A的大小
在三角形ABC中,角A,B,C所对的边分别为a,b,c,且CosA=1/3(1)求sin^2B+C/2+cos2A的值
在△ABC中,a、b、c分别是角A、B、C的对边,且8sin²(B+C)/2 - 2cos2A=7.
在三角形ABC中,a,b,c分别是∠A,∠B,∠C的对边,且【4sin(B+C/2)】的平方-cos2A=7/2,求∠A