如图,四面体ABCD中,O,E分别是BD,BC的中点,CA=CB=CD=BD=2.AB=AD=根号2.(1)求AO⊥平面
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 02:26:24
如图,四面体ABCD中,O,E分别是BD,BC的中点,CA=CB=CD=BD=2.AB=AD=根号2.(1)求AO⊥平面BCD(2)求异面直线AB与CD所成角的余弦值(3)求点E到平面ACD的距离
取AC中点F,连接OF、OE、EF
∵E、F分别是BC、AC的中点
∴EF是△ABC的中位线
∴EF∥AB,且EF=1/2AB=√2/2
∵O、E分别是BD、BC的中点
∴OE∥CD,且OE=1/2CD=1
∴异面直线AB与CD所成的角等于∠OEF(或其补角)
又OF是Rt△AOC斜边上的中线
∴OF=1/2AC=1
∴等腰△OEF中,cos∠OEF=(1/2EF)/OE=√2/4 再答: 以O为原点,建立空间直角坐标系 则B(1,0,0),D(-1,0,0),C(0,√3,0),A(0,0,1),E(1/2,√3/2,0) 向量BA=(-1,0,1),向量CD=(-1,-√3,0) ∴cos=(向量B•向量CD)/(|BA| |CD|)=√2/4 D1A 3) 由题意 CA=CB=CD=BD=2 三角行BCD为等边三角行 AB=AD=根号2 三角行ABD为等腰直角三角行 所以有0B = OD = 0A = 1/2BD = 1 即0为三角行ABD的外心 连接OC 所以OC垂直面ABD 所以 OC = 根号3 E是BC的中点,E到平面ACD的距离h 为1/2(B到平面ACD的距离) 三角形ACD为等腰三角行 C到AD的距离为(根号14)/2 四面体B-ACD的体积为1/3(2h)*1/2*AD*(根号7)/2 (1) 四面体C-ABD的体积为1/3*OC*1/2*AB*AD (2) 1/3(2h)*1/2*AD*(根号14)/2 = = 1/3*OC*1/2*AB*AD 所以 h = (根号21)/7 即点E到平面ACD的距离为(根号21)/7
再答: 第一题,连接AE。你知道了ABD是等腰的,故而AO⊥BD,然后通过勾股定理易知AO⊥EO,就行了。
再答: 好了
再答: 不用
∵E、F分别是BC、AC的中点
∴EF是△ABC的中位线
∴EF∥AB,且EF=1/2AB=√2/2
∵O、E分别是BD、BC的中点
∴OE∥CD,且OE=1/2CD=1
∴异面直线AB与CD所成的角等于∠OEF(或其补角)
又OF是Rt△AOC斜边上的中线
∴OF=1/2AC=1
∴等腰△OEF中,cos∠OEF=(1/2EF)/OE=√2/4 再答: 以O为原点,建立空间直角坐标系 则B(1,0,0),D(-1,0,0),C(0,√3,0),A(0,0,1),E(1/2,√3/2,0) 向量BA=(-1,0,1),向量CD=(-1,-√3,0) ∴cos=(向量B•向量CD)/(|BA| |CD|)=√2/4 D1A 3) 由题意 CA=CB=CD=BD=2 三角行BCD为等边三角行 AB=AD=根号2 三角行ABD为等腰直角三角行 所以有0B = OD = 0A = 1/2BD = 1 即0为三角行ABD的外心 连接OC 所以OC垂直面ABD 所以 OC = 根号3 E是BC的中点,E到平面ACD的距离h 为1/2(B到平面ACD的距离) 三角形ACD为等腰三角行 C到AD的距离为(根号14)/2 四面体B-ACD的体积为1/3(2h)*1/2*AD*(根号7)/2 (1) 四面体C-ABD的体积为1/3*OC*1/2*AB*AD (2) 1/3(2h)*1/2*AD*(根号14)/2 = = 1/3*OC*1/2*AB*AD 所以 h = (根号21)/7 即点E到平面ACD的距离为(根号21)/7
再答: 第一题,连接AE。你知道了ABD是等腰的,故而AO⊥BD,然后通过勾股定理易知AO⊥EO,就行了。
再答: 好了
再答: 不用
如图,四面体ABCD中,O、E分别是BD、BC的中点,CA=CB=CD=BD=2,AB=AD=根号2.
四面体ABCD中,O.E分别是BD.BC的中点,CA=CB=CD=BD=2,AB=AD=根号2.求证AO垂直平面BCD
如图,四面体ABCD中,O是BD的中点,CA=CB=CD=BD=2,AB=AD=根号2.(1)求证:AO垂直平面BCD;
四面体ABCD中,O.E分别是BD.BC的中点,CA=CB=CD=BD=2,AB=AD=根号2.
四面体ABCD中,O,E分别为'BD,BC的中点,CA=CB=CD=BD=2,AB=AD=根号2,求证:AO垂直于平面B
四面体ABCD中,O,E分别是BD,BC的中点且CA=CB=CD=BD=2,AB=AD=根号2
异面直线所成的角四面体A-BCD中,O、E分别是BD、BC的中点.CA=CB=CD=BD=2,AB=AD=√2.(1)求
如图,在四面体ABCD中,CB=CD=BD,AD⊥BD,点E,F分别是AB,BD的中点.
如图,四面体ABCD中,O、E分别为BD、BC的中点,且CA=CB=CD=BD=2,AB=AD=2.
如图,在四面体ABCD中,CB=CD,AD⊥BD,点E,F分别是AB,BD的中点.求证直线EF∥面ACD
在四面体ABCD中,CB=CD,AD垂直BD,且E,F分别是AB,BD的中点,求证:
在四面体ABCD中,CB=CD,AD⊥BD,点E、F分别是AB、BD的中点.求证:(1)直线EF