作业帮 > 数学 > 作业

三角形ABC中,AB=根号3,AC=1,tanB=(根号11)/5,求sin(C-B)

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 20:24:12
三角形ABC中,AB=根号3,AC=1,tanB=(根号11)/5,求sin(C-B)
三角形ABC中,AB=根号3,AC=1,tanB=(根号11)/5,求sin(C-B)
tanB=sinB/cosB=(根号11)/5 1)
sinB^2+cosB^2=1 2)
联立1),2),得
sinB=(根号11)/6,cosB=5/6
由正弦定理
AC:AB=sinB:sinC
sinC=[(根号3*根号11)/6]/1=(根号33)/6
cosC=(根号3)/6或(-根号3)/6
sin(C-B)=sinCcosB-cosCsinB
=[(根号33)/6]*(5/6)-[(根号3)/6*(根号11)/6]
=(根号33)/9
或sin(C-B)=sinCcosB-cosCsinB
=[(根号33)/6]*(5/6)-[-(根号3)/6*(根号11)/6]
=(根号33)/6