数列An满足 根号下AnAn+1 +AnAn+2=4根号下AnAn+1 +An+1An+1 +3根号下AnAn+1 且A
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 13:07:56
数列An满足 根号下AnAn+1 +AnAn+2=4根号下AnAn+1 +An+1An+1 +3根号下AnAn+1 且A1=1,A2=8求An
这道题,你要有点儿耐心看下去!
√[ ],表示[ ]内都在平方根号下
√[ana(n+1)+ana(n+2)]
=4√[ana(n+1)+a(n+1)a(n+1)]+3√[ana(n+1)]
√an*√[a(n+1)+a(n+2)]=4√a(n+1)*√[an+a(n+1)]+3√[ana(n+1)]
两边同除以√an*√a(n+1),√[a(n+1)+a(n+2)]/√a(n+1)=4√{[an+a(n+1)]/√an}+3
√[1+ a(n+2)/ a(n+1)]=4√[1+ a(n+1)/an]+4-1,设bn=a(n+1)/an
1+√(1+b(n+1)=4[1+√(1+bn)],设cn=1+√(1+bn)
c(n+1)=4cn,c1=1+√(1+b1)=1+√(1+a2/a1)=1+√(1+8/1)=4,
cn=4*4^(n-1)=4^n
1+√(1+bn)=4^n,bn=(4^n-1)^2-1=4^n(4^n-2)
an=a2/a1*a3/a2*……*an/a(n-1)
=4*4^2*……4^(n-1)*(4-2)*(4^2-2)*……*(4^(n-1)-2)
=4^(n(n-1)/2)* (4-2)*(4^2-2)*……(4^(n-1)-2)
√[ ],表示[ ]内都在平方根号下
√[ana(n+1)+ana(n+2)]
=4√[ana(n+1)+a(n+1)a(n+1)]+3√[ana(n+1)]
√an*√[a(n+1)+a(n+2)]=4√a(n+1)*√[an+a(n+1)]+3√[ana(n+1)]
两边同除以√an*√a(n+1),√[a(n+1)+a(n+2)]/√a(n+1)=4√{[an+a(n+1)]/√an}+3
√[1+ a(n+2)/ a(n+1)]=4√[1+ a(n+1)/an]+4-1,设bn=a(n+1)/an
1+√(1+b(n+1)=4[1+√(1+bn)],设cn=1+√(1+bn)
c(n+1)=4cn,c1=1+√(1+b1)=1+√(1+a2/a1)=1+√(1+8/1)=4,
cn=4*4^(n-1)=4^n
1+√(1+bn)=4^n,bn=(4^n-1)^2-1=4^n(4^n-2)
an=a2/a1*a3/a2*……*an/a(n-1)
=4*4^2*……4^(n-1)*(4-2)*(4^2-2)*……*(4^(n-1)-2)
=4^(n(n-1)/2)* (4-2)*(4^2-2)*……(4^(n-1)-2)
已知数列满足a1=1,根号an-1-根号an=根号anan-1,求an
如果数列{an}满足a1=2,a2=1,且(an-1-an)/(anan-1)=(an-an+1)/(anan+1)(n
在数列{An}中,An小于0(n属于正整数),数列{AnAn+1}是公比为q的等比数列,且满足2AnAn+1+An+1A
已知数列{an}和{bn}满足:a1=1,a2=2,an>0,bn=根号anan+1,且{bn}是以q为公比的等比数列.
已知数列An 满足A1=1,且4An+1-AnAn+1+2An=9
已知数列{an}满足a1=2且anan+1-2an=0球a2,a3,a4的值
已知数列{an},若1/a1a2+1/a2a3+…+1/anan-1=n/anan+1,求证{an}为等差数列.
已知数列{an}中,a1=2,anan+1+an+1=2an
一道高中数学数列题目an+1+anan-1-2an=0 a1=1 求通项
已知数列An满足:a1=1,a2=a(a>0),数列Bn=AnAn+1
已知数列An满足:a1=1,a2=a(a>0),数列Bn=AnAn+1 (1)若AN是等差数列,且B3=12,求...
数列an满足an+1=2an-1且a1=3,bn=an-1/anan+1,数列bn前n项和为Sn.求数列an通项an,