作业帮 > 数学 > 作业

已知数列{an}的各项均为正数,且6Sn=(an+1)(an+2),n∈N+

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 08:04:01
已知数列{an}的各项均为正数,且6Sn=(an+1)(an+2),n∈N+
(1)求证{an}是等差数列 (2)求{an}的通项公式
已知数列{an}的各项均为正数,且6Sn=(an+1)(an+2),n∈N+
(1)
6Sn=(an+1)(an+2)
6S(n-1)=(a(n-1)+1)(a(n-1)+2)
两式想减得
6an=an^2+3an+2-a(n-1)^2-3a(n-1)-2
an^2-3an-a(n-1)^2-3a(n-1)=0
(an+a(n-1))(an-a(n-1))-3(an+a(n-1))=0
(an+a(n-1))(an-a(n-1)-3)=0
因为{an}各项均为正数,所以an+a(n-1)>0
所以an-a(n-1)-3=0
所以an-a(n-1)=3
所以{an}是等差数列
(2)
{an}公差为3,
6a1=(a1+1)(a1+2)=a1^2+3a1+2
a1^2-3a1+2=0
(a1-1)(a1-2)=0
a1=1或a1=2
所以an=1+3(n-1)=3n-2或an=2+3(n-1)=3n-1