作业帮 > 数学 > 作业

已知sin(2α+β)=3sinβ,tanα=x,tanβ=y,设y=f(x) 求f(x)的解析式

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 14:16:03
已知sin(2α+β)=3sinβ,tanα=x,tanβ=y,设y=f(x) 求f(x)的解析式
已知sin(2α+β)=3sinβ,tanα=x,tanβ=y,设y=f(x) 求f(x)的解析式
sin(2α+β)=sin(2α)cosβ+cos(2α)sinβ=3sinβ
sin(2α)+cos(2α)tanβ=3tanβ
[3-cos(2α)]tanβ=sin(2α)
tanβ=sin(2α)/[3-cos(2α)]=2sinαcosα/(2+sin²α)
=2sinαcosα/(4sin²α+2cos²α)
=2tanα/(4tan²α+2)
=tanα/(2tan²α+1)
tanα=x tanβ=y代入
y=x/(2x²+1)
f(x)的解析式为f(x)=x/(2x²+1)