求证:∫(0至π) x f(sinx)dx = π/2∫(0至π)f(sinx)dx
证明∫(0,π)f(sinx)dx=2∫(0,π/2)f(sinx)dx
设f(x)∈C[0,1],证明∫(π,0)*x*f(sinx)dx =π/2*∫(π,0)*f(sinx)dx
∫f(sinx,cosx)dx=∫f(cosx,sinx)dx上下限是[0,π/2]
证明:若函数f(x)在[0,1]上连续,则∫xf(sinx)dx=π/2∫f(sinx)dx (上限 π,下限 0)
设f(x)连续,证明(积分区间为0到π)∫xf(sinx)dx=(π/2)∫f(sinx)dx
如何证明∫[0,π]xf(sinx)dx=π∫[0,π/2]f(sinx)dx
证明∫(上π,下0)xf(sinx)dx=π/2∫(上π,下0)f(sinx)dx
积分∫f(sinx)/[f(cosx)+f(sinx)]dx= 在0到π/2的范围内
∫0~2π x|sinx|dx
若f(x)在[0,1]上连续,证明 ∫【上π/2下0】f(sinx)dx= ∫【上π/2下0】f(cosx)dx
设f(x)在【0,1】上连续.证明∫(π/2~0)f(cosx)dx=∫(π/2~0)f(sinx)dx
设f(x)为连续函数,证明:∫(0,π)f(丨cosx丨)dx=2∫(0,π/2)f(sinx)dx